A:这种现象是由于驱动器脉冲输出反馈到计算机的A/B正交信号相序错误、形成正反馈而造成,可以采用以下方法处理:
A.修改采样程序或算法;
B.将驱动器脉冲输出信号的A 和A-(或者B 和B-)对调,以改变相序;
C.修改驱动器参数No45,改变其脉冲输出信号的相序。
Q:在我们研制的一台检测设备中,发现松下交流伺服系统对我们的检测装置有一些干扰,一般应采取什么方法来消除?
A:由于交流伺服驱动器采用了逆变器原理,所以它在控制、检测系统中是一个较为突出的干扰源,为了减弱或消除伺服驱动器对其它电子设备的干扰,松下伺服电机报警,一般可以采用以下办法:
A.驱动器和电机的接地端应可靠地接地;
B.驱动器的电源输入端加隔离变压器和滤波器;
C.所有控制信号和检测信号线使用屏蔽线。
干扰问题在电子技术中是一个很棘手的难题,没有固定的方法可以完全有效地排除它,通常凭经验和试验来寻找抗干扰的措施。
Q:伺服电机为什么不会丢步?
A:伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制。所以伺服电机不会出现丢步现象,每一个指令脉冲都可以得到可靠响应。
松下伺服,松下伺服电机, 在伺服系统中控制机械元件运转的发动机·是一种补助马达间接变速装置。松下伺服电机的运用也越来越广阔,那么我们今天就来分析一下伺服电机如何来选型。
一、运行性能不同
松下伺服马达的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现伺服马达的丢步或过冲的现象,控制性能更为可靠。
二、低频特性不同
伺服马达在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,松下伺服电机接线,一般认为振动频率为电机空载起跳频率的一半。这种伺服马达的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当安川伺服马达工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。
松下伺服电机运转非常平稳,即使在低速时也不会出现振动现象。松下伺服电机系统具有共振***功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),松下伺服电机驱动器,可检测出机械的共振点,便于系统调整。
三、过载能力不同
伺服马达一般不具有过载能力。松下伺服电机具有较强的过载能力。
用作自动控制装置中执行元件的微特电机。又称执行电动机。其功能是将电信号转换成转轴的角位移或角速度。伺服电动机分交、直流两类。交流伺服电动机的工作原理与交应电动机相同。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf接一恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电动机运行的目的。交流伺服电动机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。直流伺服电动机的工作原理与一般直流电动机相同。电动机转速n为
版权所有©2024 产品网