MIM金属***成型工艺
MIM工艺介绍与对比
一、MIM概念及工艺流程
金属粉末***成形是传统粉末冶金技术与塑料***成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。☆组合为了节省库存与组装费用,当讲多个零件团结为一个零件时,可以受益。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在***机上***成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理
生产工艺流程如下
配料→混炼→造粒→***成形→化学萃取→高温脱粘→烧结→后处理→成品
二、MIM技术特点
金属粉末***成形结合了粉末冶金与塑料***成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料***成形技术能大批量、***率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等
·MIM技术的优点
a.直接成形几何形状复杂的零件,通常重量0.1~200g
b.表面光洁度好、精度高,典型公差为±0.05mm
c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部***均匀,无内应力和偏析
d.生产自动化程度高,无污染,可实现连续大批量清洁生产
MIM产品典型应用领域
航空航天业:机翼铰链、火箭喷嘴、涡轮叶片芯子等
汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等
电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等
日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等
机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等
***行业:牙矫形架、剪刀、镊子、***刀等
六、适合材质
不锈钢 Fe合金 Fe-Ni-Co 合金钨 钛合金 工具钢 高速钢 硬质合金 氧化铝 氧化锆
金属粉末颗粒状及制造方法对mim公工艺的影响
MIM是一种将传统粉末冶金和现代塑料注塑成形技术结合而成的新型金属成形工艺。金属***成形工艺对于金属粉末的选择有严格标准,这是因为粉末颗粒的形状可以左右制品的质量。
好的金属喂料才可以成形好的产品,而好的粉末会成就好的金属喂料,这也就是说金属粉末的好坏影响着MIM制品的性能。那么怎样才算是好的金属粉末呢?
行业经过多年的生产实践和行业***的理论研究发现,越是粒度细小、颗粒均匀、接近球状的粉末颗粒越适合制造喂料,这样的粉末制成的喂料在后续的制品成形过程中流动性良好,有利于整个MIM工艺的顺利完成,而且脱粘容易,脱粘后的坯件在烧结过程中收缩均匀且程度较小。采用达克罗工艺处理的标准件、管接件经耐盐雾试验1200h以上未出现红锈。
但是在实际生产中,由于成本、技术等多方面因素影响,用来生产喂料的金属粉末原料并不都是“很好”的。对于不同的金属粉末,其混炼时选择的粘结剂种类也不同,配比自然也不同。甚至是我们认为好的粉末原料也难免因为成形部件的形状不易保持而影响到MIM成形工艺的效果。例如金属***成形工艺中用到的钢粉虽然是球形的,粒度大小也符合工艺要求,但是因为颗粒间的咬合力小,制品形状很难维持。
于是人们就想,那把球形的粉末换成不规则形状的会不会好一点呢?事实证明,这种改变虽然增加了颗粒间的咬合力,但是却不能使金属喂料在加热状态下还能保持较好的流动性,减弱了制品的均匀性,严重影响到MIM坯件的脱粘和烧结环节,以致影响***终的制品性能和成品率。005%,随着温度升高,溶解度略有增加,在727度时达到峰值,也仅有0。
可见想要获得性能、形状稳定的制品还要另想改善措施,目前制造金属喂料使用的金属粉末一般分为两种:气雾化粉末和水雾化粉末。这两种粉末形状性质迥异,单独用哪种都不能获得好的喂料。
气雾化粉中加入水雾化粉可提高***成形件的形状保持能力,降低各向异性收缩。工艺流程:前处理→无青碱铜→无青白铜锡→镀铬技术特点:优点:1、镀层光泽度高,高品质金属外观。若混合粉的自然坡度角小,则说明颗粒间的相互作用小,所制部件在烧结后各向异性收缩较大。气雾化粉含量大的试样,脱粘后易于坍塌。使用水雾化粉末,可保持形状而不损害其力学性能。颗粒的不规则形状影响混合粉的烧结性,使用较大比例的水雾化粉可促进致密化。
综上所述,金属粉末颗粒形状对MIM工艺的影响是根源性和***终性的,选择合适的金属粉末制成合适的金属喂料对成形高质量的MIM制品至关重要。
粉末微***成形技术
近年来,微系统技术在各个领域的发展非常迅速,同时也对应用于微型工程中的三维微型复杂元器件的制造提出了更高的要求,希望微型器件在具备满足使用要求性能的同时,能够实现规模化生产。三、微弧氧化(MAO)微弧氧化:在电解质溶液中(一般是弱碱性溶液)施加高电压生成陶瓷化表面膜层的过程,该过程是物理放电与电化学氧化协同作用的结果。微系统中主要的元器件包括微型模具、用于传感器和jia速器上的微型机械结构、生物传感器、微型流体元件、微型反应器等。这些元器件形状复杂、体积微小,采用现有的微型加工技术如微型切削、激光切削、硅刻蚀技术等,生产效率低,无法开展大规模生产,而近年来在粉末***成形基础上发展起来的粉末微***成形工艺为实现微型元器件规模化生产提供了***具潜力的制备技术。
粉末微***成形技术是指针对尺寸小于1微米的零件在传统粉末***成形技术基础上所开发的一种成形技术,主要应用于连续制造具有微观结构表面与微型结构的零件,其基本工艺步骤与传统的粉末***成形基本相同,所制备零件的表面质量与孔隙度可通过选择原始粉末与适宜的烧结条件来控制。粘结剂的主要作用是充当粘结金属粉末颗粒流动的载体以及成型后保持工件形状。与传统粉末***成形不同的是,粉末微***成形为了便于制造微小结构,所选择的粉末平均粒径一般小于1~2微米;其次,由于粉末比表面积增大,需要粘度较低但有足够强度的粘结剂,以利于微***成形并避免生坯件脱模时损坏。另外,为了防止变形、裂纹及气泡的产生,微***成形技术对脱脂和烧结的工艺条件更加苛刻。
目前,国际上开展该技术研究的主要***有德国、日本、新加坡、美国和英国。☆使用性能如果使用性能很重要,则MIM的高密度形成的性能经常都有竞争力。其中,德国开展并取得了突出的成果。国内的北京科技大学、中南大学以及大连理工大学也在该领域进行了一系列研究工作。如北京科技大学研制了具有自主知识产权、适用于传统***成形机的粉末微***成形用模具;并以羰ji铁粉和铁镍合金粉为原料,在传统***成形机上成功实现了粉末微***成形齿顶圆直径小于1毫米的微型齿轮。
金属微***成型技术(μ-MIM)
微机械或微机电系统(MEMS)是20世纪80年代后期发展起来的一门新兴的交叉学科,已被公认为21世纪***发展的关键学科之一。
微机械或微机电系统的实用化依赖于微细加工技术的进步,金属微***成型技术是批量化***率生产高精度、高性能微型金属或陶瓷零件的一种***有效的方法。
金属微***成型技术是指利用MIM工艺生产微米尺寸或微米结构金属或陶瓷零件的一门工艺技术,一般指尺寸小于1mm或局部微米级精细结构的精密零件。
目前,采用适当的细粉,可以制取25~50μm厚、局部结构细节小于5μm、表面粗糙度大2~3μm的金属或陶瓷零件。
金属***成型零件的尺寸向两个极端发展,微米尺寸精密零件有着巨大的市场容量和发展潜力。这些小零件的技术附加值非常高,例如光纤金属套、激光导管、印刷电路微型钻、微电子执行器及YA科***等零件,每千克售价为4000~20000美元。
微***成型产品在执行器、传感器、袖珍消费品、航空航天、电子组装工具、氧分析仪、过滤器及******设备等方面有着广阔的应用前景。
限制微***成型技术发展的主要障碍是精密微细模具的制造、狭窄缝隙的***充填及为小零件的操作处理。
生产这类高精度微小零件的模具比常规模具要精密的多,需要用到各类现金为细加工技术,如光刻加工、电铸加工、微细切割、微细电火花加工等。采用LIGA(德文制版术、电铸成型和注塑成型三次缩写)等工艺制造塑料消失模具方法,可以很好地解决上述问题。
版权所有©2025 产品网