什么情况下合采用MIM工艺
MIM工艺的制程技术、材料和设备在国内已经越来越成熟,应用范围也非常广。
零件形状复杂、尺寸较小以及产量大,这些都是MIM工艺的优势。
这些强项,使其在电子数码产品、手表、手工工具、牙齿矫正支架、汽车发动机零件、电子密封件、切削工具及运动器械中得到了大量的应用。
那么,如何判定一个产品是否应该选择MIM工艺,也就是选择MIM工艺的准则是什么呢?
目前主要有下列主要事项,选择MIM工艺前需要考虑清楚。
1.
质量、切削量:对于在切削加工和磨削加工中材料损耗非常、加工非常耗时的零件,MIM在降低生产成本上极有优势;
2.
总需求量:模具费和研发费用对于低需求量的产品,分摊下来后是很难以承受的。因此,当产品的年需求量达到或超过2万件时,可以考虑选择MIM工艺。
3.
材料:MIM工艺是一种近净成形技术,对于由钛、不锈钢及镍合金之类难易切削的材料设计的零件,MIM***有吸引力。
4.
产品复杂性:MIM工艺***适合制造几何形状复杂的、在切削加工中需要变换很多次加工工位的多轴零件、多基准零件。
5.
使用性能:基于MIM产品的高密度,如果使用性能有需求,则MIM的高密度形成的性能有竞争力。
6.
表面粗糙度:表面粗糙度反映了粉末颗粒的大小。
7.
公差(精度要求):MIM烧结件的公差大概为±0.3%,如果产品要求的公差很严格,MIM烧结件就需要二次加工,如CNC,数控车等,MIM的成本也趋向于增加,需要评估比较。
8.
组合:为了节省库存与组装费用,可见多个零件固结为一个零件。
9.
缺陷:必须使MIM固有的缺陷处于非关键位置,或制造成型后可以除去,例如浇口印迹,顶针印迹或结合线。
10.
新型组合材料:MIM可制造出传统工艺难以制造的新型组合材料,例如叠片的或两种材料结构的或耐磨耗用的混合的金属-陶瓷材料。
MIM常用材料的种类很多,但有几种是主要的。若材料难以切削加工,诸如工具钢、钛、镍合金或不锈钢,对于MIM***终成型来说,是***有利的,MIM工艺可以一次性成型复杂的几何形状特征。
在不同的生产地点之间,用MIM可达到的性能是不同的。我们在设计之前,需要的许多性能参数都汇总与技术手册中。
现在,我们看到了很多为MIM设计的新的材料,其中有叠片结构的(硬磁-软磁,磁性的-非磁性的,传导性的-绝缘的)、泡沫金属及孔新建,这些可选择的项目,都将MIM推进到了几乎没有工艺可替代的领域。
不锈钢抛光一
金属***成型产品烧结出来后,因为各种原因,表面的光洁度相对比较粗糙,并有轻微的毛刺,并可能有细小的不锈钢粉粒黏着在产品表面。为了达到表面光洁度(有的产品甚至要求达到镜面效果,如苹果的Logo产品)和去毛刺的要求,往往都会增加研磨、抛光、喷砂等表面处理工艺。与机加工工艺相比,粉末冶金齿轮的经济批量一般取决于零件的大小、结构复杂程度、产品要求精度以及其它性能要求。
1. 机械抛光
机械抛光是靠切削、材料外表塑性变形去掉被抛光后的凸部而得到平滑面的抛光方式,一般运用油石条、羊毛轮、砂纸等,以手工操作为主,特别零件如回转 体外表,可运用转台等辅佐工具,外表质量要求高的可采取超精研抛的方式。
2.化学抛光
其长处是加工设备***少,庞杂件能抛,速度快,防腐性好。,效率高, 其缺陷是光明度差,有气体溢出,须要通风设备,加温艰难。适宜加工小批量庞杂件及小零件光明度要求不高的产品。
化学抛光是让材料在化学介质中外表宏观凸出的部分较凹部分优先溶解,从而得到平滑面。这种方式的重要长处是不需庞杂设备,可以抛光外形庞杂的工件,可以同时抛光很多工件,效率高。化学抛光的核心问题是抛光液的配制。化学抛光得到的外表毛糙度一般为数10μm。由于压制和模具上的原因,一般不适宜生产蜗轮、人字形齿轮和螺旋角大于35°的斜齿轮。
其长处是镜面光泽维持长,工艺稳固,污染少,本钱低,防腐性好。其缺陷是防污染性高,加工设备一次性***大,庞杂件要工装、辅佐电极,大批生产还须要降温设备。适宜批量生产,重要应用于出口产品,有公差产品,其加工工艺稳固,操作上也相对简略。一般情况下,珠光体中铁素体和渗碳体呈片状交替分布,称为片状珠光体。
电解抛光根底原理与化学抛光雷同,即靠选择性的溶解材料外表渺小凸出部分,使外表光滑。与化学抛光相比,可以清除阴极反映的影响,效果较好。
电化学抛光过程分为两步:
(1)宏观整平 溶解产物向电解液中分散,材料外表几何毛糙下降,Ra>1μm。
(2)微光平坦阳极极化,外表光明度提高,Ra<1μm。
金属粉末颗粒状及制造方法对mim公工艺的影响
MIM是一种将传统粉末冶金和现代塑料注塑成形技术结合而成的新型金属成形工艺。金属***成形工艺对于金属粉末的选择有严格标准,这是因为粉末颗粒的形状可以左右制品的质量。
好的金属喂料才可以成形好的产品,而好的粉末会成就好的金属喂料,这也就是说金属粉末的好坏影响着MIM制品的性能。那么怎样才算是好的金属粉末呢?
行业经过多年的生产实践和行业***的理论研究发现,越是粒度细小、颗粒均匀、接近球状的粉末颗粒越适合制造喂料,这样的粉末制成的喂料在后续的制品成形过程中流动性良好,有利于整个MIM工艺的顺利完成,而且脱粘容易,脱粘后的坯件在烧结过程中收缩均匀且程度较小。现在,我们看到了很多为MIM设计的新的材料,其中有叠片结构的(硬磁-软磁,磁性的-非磁性的,传导性的-绝缘的)、泡沫金属及孔新建,这些可选择的项目,都将MIM推进到了几乎没有工艺可替代的领域。
但是在实际生产中,由于成本、技术等多方面因素影响,用来生产喂料的金属粉末原料并不都是“很好”的。甚至是我们认为好的粉末原料也难免因为成形部件的形状不易保持而影响到MIM成形工艺的效果。例如金属***成形工艺中用到的钢粉虽然是球形的,粒度大小也符合工艺要求,但是因为颗粒间的咬合力小,制品形状很难维持。业内人士都知道混炼对喂料生产很重要,但却并不是所有人都能系统知道哪些因素会影响到混炼效果,今天小编就和大家一起从粉末与粘结剂配比和加料顺序的角度了解一下。
于是人们就想,那把球形的粉末换成不规则形状的会不会好一点呢?,效率高,其缺陷是光明度差,有气体溢出,须要通风设备,加温艰难。事实证明,这种改变虽然增加了颗粒间的咬合力,但是却不能使金属喂料在加热状态下还能保持较好的流动性,减弱了制品的均匀性,严重影响到MIM坯件的脱粘和烧结环节,以致影响***终的制品性能和成品率。
可见想要获得性能、形状稳定的制品还要另想改善措施,目前制造金属喂料使用的金属粉末一般分为两种:气雾化粉末和水雾化粉末。这两种粉末形状性质迥异,单独用哪种都不能获得好的喂料。
气雾化粉中加入水雾化粉可提高***成形件的形状保持能力,降低各向异性收缩。若混合粉的自然坡度角小,则说明颗粒间的相互作用小,所制部件在烧结后各向异性收缩较大。气雾化粉含量大的试样,脱粘后易于坍塌。使用水雾化粉末,可保持形状而不损害其力学性能。颗粒的不规则形状影响混合粉的烧结性,使用较大比例的水雾化粉可促进致密化。主要集中在深圳、上海、江苏、浙江等沿海城市,据不完全统计有两百多家。
综上所述,金属粉末颗粒形状对MIM工艺的影响是根源性和***终性的,选择合适的金属粉末制成合适的金属喂料对成形高质量的MIM制品至关重要。
版权所有©2025 产品网