武汉迅微光电技术有限公司***从事生物***光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。欢迎来电咨询!由于具有非接触,无创伤,快速成像等优点,激光散斑成像技术,非常适用于血液微循环的测量。!!脑血流监测:研究表明,大脑***元活动与局部脑血流变化存在紧密联系。Boas 研究小组率1先使用激光散斑衬比成像监测脑血流(CBF: Cerebral Blood Flow)的时间和空间变化。他们通过对比激光散斑技术与激光多普1勒技术的脑血流测量结果,验证了激光散斑血流监测技术的有效性 ;并使用该技术监测了皮层扩散***(CSD: CorticalSpreading Depression)时皮层和软脑膜的血流变化;Yodh 和 Luo 研究小组研究了对大鼠躯体功能刺激引起的脑血流变化,刺激强度与脑血流变化大小相关;结合内源光光谱成像和激光散斑成像技术,可以同时测量脑血流的血氧、血容和流速的变化;而结合荧光成像和激光散斑技术,可以测量脑血流和氧化代谢的动态变化。
武汉迅微光电技术有限公司***从事生物***光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。欢迎来电咨询!!激光多普1勒血流仪用途:可应用***皮肤、肌肉、骨骼、牙齿、脑、肝、胃肠道(黏膜、浆膜)、肠系膜等几乎所有***/器1官的血流。!激光散斑血流成像技术是一种宽场的血流成像技术,时间和空间分辨率高,成像范围易于控制,被用于术中检测、研究***血管耦合机制以及药1物评估等应用中。然而,该技术采样深度受限,主要探测生物***表层的血流信息。主要原因是受限于***的散射作用,这使得入射光波前被生物***扰动,严重影响了成像质量和深层***流速信息的提取。目前,关于提高流速信号采样深度的方法已有较多报道,如使用光透明剂减小***光散射等,而利用波前调制技术实现透过散射介质流速成像的方法还没有报道。
武汉迅微光电技术有限公司***从事生物***光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。欢迎来电咨询!结合内源光光谱成像和激光散斑成像技术,可以同时测量脑血流的血氧、血容和流速的变化。!!散斑成像是透过图像处理技术以重建原始影像。散斑成像的关键技术是由美国天文学家大卫·弗里德在1966年开发完成。该技术是以极短***时间拍摄到大气层“扰动停止”时的天体影像。在红外线波段的***时间约100毫秒量级,而可见光部分则是更短的10毫秒。影像在如此短暂的***时间下,大气层的扰动相较之下更慢而无法对影像产生影响,即快速***的影像中斑点是短时间内大气视宁度状态下的影像。而散斑成像也有一个缺点:如果目标天体太过暗淡,将难以拍摄该天体的短时间***影像,并且没有足够的光量进行分析。在1970年代早期该技术的早期应用是在受限状况下以底片摄影进行。但是摄影底片只能接受7%的入射光,因此只有亮的天体能使用散斑成像。CCD在天文学上应用后,超过70%的入射光可以成像,大幅降低了散斑成像法的使用限制条件,因此今日被广泛应用在恒星和恒星系等较明亮天体。
![](http://img3.dns4.cn/pic/300140/p2/20191017093837_9305_zs_sy.jpg)
散斑成像法的技术:基于位移叠加法的技术在被称为“位移叠加”的方式中,短时间***的所有影像依照明亮的斑点依序排列,并且进行强度平均以取得单一输出影像。在幸运成像法中,只有的数幅短时间***影像会被选用。较早期的位移叠加技术是基于影像几何中心,因此获得的斯特列尔比较低。基于散斑干涉法的技术法国天文学家安托万·埃米尔·亨利·拉贝里耶于1970年提出物体高分辨率结构影像等信息可经由对物体的散斑图像进行傅里叶转换(散斑干涉法)而得到。1980年代相关技术的发展让研究人员得以将散斑图像进行干涉的影像重建而得到高分辨率影像。从而达到理想的治效果,术后无明显***,一般仅需治1疗1—2次。