




激光散斑原理激光散斑对比分析技术能够使微循环血流灌注瞬间变化肉眼可见。该成像技术分辨率高,采样频率快!
目标受到激光束照射时,反射后的激光形成随机干扰图像(包括亮区和暗区),该图像称为激光散斑图。如果被测目标静止,激光散斑图也保持不变。如果被测物体发生移动,例如***中的红细胞运动,则激光散斑图会随之波动。激光探测相机记录激光散斑图的上述变化。
激光散斑图的变化速度取决于监测区域内目标移动速度;目标移动速度越快,散斑图变化越明显。散斑变化速度以散斑对比度量化,而对比度与血流相关;这就是 LASCA技术用于血流灌注量评估的工作原理。散斑对比度定义为强度标准差与强度平均值的比值。监测区域内运动越厉害,散斑波动会增加,强度标准差会降 低,因此散斑对比度较低。相反,如果没有运动,散斑波动会减少,强度标准差会升高,激光散斑血流成像仪,因此散斑对比度较高。而强度平均值保持不变。
像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。欢迎来电咨询!!!当激光照射在墙壁、纸张、毛玻璃等这些平均起伏大于波长数量级的光学粗糙表面(或透过光学粗糙的透射板)上时,这些表面上无规分布的面元散射的子波相互叠加使反射光场(或透射光场)具有随机的空间光强分布,呈现出颗粒状的结构,这就是激光散斑。激光散斑具有随机性,无空间参照性,它与无线电收音机的电噪声一样,对信息的传递是***的。然而噪声本身也是物质运动的一种形式,在无线电广播中人们就利用高频电波作载波传递信息。因此,只要运用得当,散斑也可以成为信息的载体。激光散斑是激光照射在粗糙表面上而形成的,因此散斑图样的分布必定会依赖于被照表面的细微结构,从而可以利用它来测量表面粗糙度;散斑是由大量细微的高反差亮斑构成,根据“测不准关系”,它的频谱本身必然很宽,因此可利用它对图像信息编码,进行图像的加减,信息存储。物体的位移或变形必然引起散斑场的变化,因此通过测量散斑场的变化就可以获取物体的形变信息,这就是散斑计量技术的研究内容
版权所有©2025 产品网