随着近年来环境问题地日趋严峻,***都刮起了绿色能源风潮。而太阳能光伏发电则成为这场风潮中当之无愧地明星之一。一片片地蓝色屋顶逐渐慢慢衍生到世界地各个角落,成为了各国别墅居民配。它到底有哪些魅力,能成为农村乃至城市地潮流趋势呢?
节能与美观并重,建筑装修潮流
在欧美,家用光伏电站早就成了普通家庭地常见家电。家庭光伏电站不仅可以生产清洁能源,同时还将使建筑更加美观,让你地屋顶成为别致地、美地风景,达到光伏电站与建筑物地协调统一、发电和美观并重地双重效果,满足现代建观、安全、实用、环保、节能地要求。其中:水平屋顶上光列阵可以按角度安装,从而获得发电量,并且可采用常规晶体硅光伏组件,减少组件***成本,经济性相对效好,但是这种安装方式地美观性一般。
绿色能源逐渐代替传统煤油发电地共识,逐渐在***扩散。家用分布式光伏发电每发一度电,就相当于节约标准煤0.4千克,减排二氧化碳0.947千克,具有非常明显地节能减排效果。
***政策支持
在补贴方面,家用光伏电站每发一度电都能获得0.42元地***补贴,补贴20年。另外,各地方也有相应地补贴政策,例如北京补贴0.3元/度,补贴3年;上海补贴0.4元/度,补贴5年。世界将太阳能作为一种能源和动力加以利用,已经有300多年的历史。由于分布式光伏由于不占用现有土地,而且充分利用建筑物地闲置资源,得到了***政策地大力支持。
1839 年,19 岁的法国贝克勒尔做物理实验时,发现在导电液中的两种金属电极用光照射时电流会加强,从而发现了“光生伏打效应”。1930 年,郞格提出用“光伏效应”制造太阳能电池,使太阳能变成电能。
1932 年奥杜博特和斯托拉制成太阳能电池。
1941 年奥杜在硅上发现光伏效应。
1954 年5 月美国贝尔实验室恰宾、富勒和皮尔松开发出效率为6%的单晶硅太阳能电池,这是 世界上有实用价值的太阳能电池,同年威克发现了光伏效应,并在玻璃上沉积硫化镍博膜,制成了太阳能电池,太阳光转化为电能的实用光伏发电技术由此诞生并发展起来。光伏发电的工作特性1、电能储存单元:太阳能电池产生的直流电***入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。
光伏组件作为光伏发电系统中的核心组成部分,质量问题影响着电站系统效率,其中,热斑效应和PID效应对光伏组件功率的影响尤其突出,不容忽视。今天小编介绍影响光伏组件功率好坏的两大效应详解;
1、热斑效应
热斑效应是指在一定条件下,串联支路中被遮蔽的光伏组件将当做负载,消耗其他被光照的电池组件所产生的能量,被遮挡的光伏电池组件此时将会发热的现象;太阳能电池主要分为晶体硅电池和薄膜电池两类,前者包括单晶硅电池、多晶硅电池两种,后者主要包括非晶体硅太阳能电池、铜铟硒太阳能电池。被遮挡的光伏组件、将会消耗有光照的光伏组件所产生的部分能量或所有能量,降低输出功率;严重将会光伏组件、甚至烧毁组件。
2、热斑效应产生原因
造成热斑效应的根源是有个别坏电池的混入、电极焊片虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局部受到阴影遮挡等;储能电站中储能容量大小是根据用电设备功率大小使用时间配比而成。由于局部阴影的存在,光伏组件中某些电池单片的电流、电压发生了变化。其结果使电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升;
3、防护措施要求
在光伏电池组件的正负极间并联一个旁路二极管,以增加方阵的可靠性。通常情况下,旁路二极管处于反偏压,不影响组件正常工作。其原理是当一个电池被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电流的部分被二极管分流,从而避免被遮电池过热损坏。目前,家用光伏市场前景良好,有决心***的,也有驻足观望的,光伏发电系统分类:***光伏发电、并网光伏发电、分布式光伏发电。以避免光照组件所产生的能量被受遮蔽的组件所消耗。
2、PID效应
电位诱发衰减效应是电池组件长期在高电压作用下,使玻璃、封装材料之间存在漏电流,大量电荷在电池片表面,使得电池表面的钝化效果恶化,导致组件性能低于设计标准。PID现象严重时,会引起一块光伏组件功率衰减50%以上,从而影响整个组串的功率输出。并网更快大型地面电站想要并网成功,得需要过好多关卡,国土部门、林业部门、村委会、村民、电力部门等等,手续十分繁琐,而家用光伏电站的并网流程就简单多了,只要屋顶产权明晰、电站产品质量过关符合电网要求,就能很快并上网。高温、高湿、高盐碱的沿海地区易发生PID现象。
3、产生的原因
一是系统设计原因,光伏电站的防雷接地是通过将方阵边缘的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID现象的发生,但逆变器负极接地会增加相应的系统建设成本;二是光伏组件原因,高温、高湿的外界环境使得电池片和接地边框之间形成漏电流,封装材料、背板、玻璃和边框之间形成了漏电流通道。通过使用改变绝缘胶膜乙烯酯(EVA)是实现组件抗PID的方式之一,在使用不同EVA封装胶膜条件下,组件的抗PID性能会存在差异。另外,光伏组件中的玻璃主要为钙钠玻璃,玻璃对光伏组件的PID现象的影响至今尚不明确;三是电池片原因,电池片方块电阻的均匀性、减反射层的厚度和折射率等对PID性能都有着不同的影响。在系统设计方面,我们要有开发自己的设计软件,同时提高光伏功率预测技术提高系统效率。
4、有效***PID效应的措施
首先是从组件侧考虑,采用非Na、Ca玻璃提高玻璃的体电阻,阻断漏电流通路的形成;所有的储能系统基本没有统一的,只能通过用电功率、时间结合当地光照资源单独计算。或者采用非乙烯—共聚物的封装材料;其次是从逆变器侧考虑,采用组件负极接地的方式,防止负偏压造成的漏电流形成,处置方案简便、成本低、效果显著,但负极直接接地会造成安全隐患,威胁电站的正常运行和运维安全。逆变器负极接地后,若发生组件正极接地故障则会造成电池板短路,而运维人员如若接触到正极则会发生***,所以负极接地电路必须具有异常电流监测及分断保护系统,方可在***PID效应的同时保障电站设备的运行安全。
版权所有©2025 产品网