永磁同步电机因具有高功率密度、***率等优点,被广泛应用于电动汽车的驱动系统中。钕铁硼(NdFeB)永磁材料由于具有较高的磁能积(BH)max、剩磁Br和矫顽力Hc,被广泛应用于永磁电机。但钕铁硼永磁材料的热稳定性不够理想,磁性温度系数较高,高温运行时可能导致严重磁损,且在某些工况下若电流激增,也将导致不可逆退磁。本文作者以一台在温升试验中发生转子退磁故障的电机为例,对失效原因进行分析,找出引发退磁的相关影响因素和风险程度,同时验证电机的稳定性和可靠性。
1 试验现象
文中所研究的对象为某高速电机,该电机为钕铁硼永磁同步电机,冷却方式为水冷,转速15 000 r/min。
为验证该电机在高速工况下运行的可靠性,计划进行连续3个高速负载工况的台架温升试验。工况一:15 000 r/min@55 kW,测试时长45 min;工况二:15 000 r/min@70 kW,测试时长6 min;工况三:15 000 r/min@100 kW,测试时长60 s。在实际试验过程中,在工况三进行到23 s时,电机温度达到许用温度179 ℃,软件报故障停机。清除故障重新上电后,发现电机的输出功率明显小于输入功率。随后测量了电机的反电动势,与正常值相比下降了50%左右,如图1所示。由此判断,电机转子发生了不可逆退磁。
2 失效件拆解
将转子总成从电机中拆出后,用磁极观察片观察发现,转子中间区域退磁严重。
进一步拆解转子,透过观察片观察单片磁钢,发现部分磁钢局部退磁且存在磁极反向现象。
拆解转子中的每一片磁钢,逐个检测磁通,并按照磁钢所在的铁芯层(共6层)和转子周向角度位置绘制各层磁钢的磁通分布曲线,如图3所示,可以得出,永磁同步电机效率,不同铁芯层中的磁钢退磁程度差异较大,转子两端(1、2、6层)的磁钢退磁不明显,永磁同步电机转速,而转子中间层(3、4、5层)的磁钢退磁较为明显,特别是第4层退磁***为严重。
永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。
1、转速闭环恒压频比控制
转速闭环恒压频比控制是一种常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,永磁同步电机价格,调速方便,锦州永磁同步电机,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首的方法。
2、转差频率控制
转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩,但它依据的只是稳态模型,并不能真正控制动态过程中的转矩,从而得不到很理想的动态控制性能。
直流无刷电机反电动势(BACK EMF)
根据楞次定律,当BLDC转动时其绕组会产生与绕组两端电压相反方向的反向电压,这就是反电动势(BACK EMF)。记住,反电动势和绕组所加电压是反向的。决定反电动势的主要因素有以下几点:
· 转子的角速度;
· 转子永磁体的磁场强度;
· 每个定子绕组缠绕的线圈数量。
计算反电动势的公式:Back EMF = (E) ∝ NlBw 其中:
· N为每相绕组的线圈数量
· L转子的长度
· B为转子的磁通密度
· W为转子的角速度
当电机一旦做好,那么其绕组的线圈数量和永磁体的磁通密度就定了,由公式可知,决定反电动势的量就是转子的角速度(也可以换算为线速度)且角速度和反电动势成正比。厂家一般会提供电机的反电动势常量,通过它我们可以用来估计某一转速下反电动势的大小。
绕组上的电压等于供电电压减去反电动势,厂家在设计电机的时候会选取适当的反电动势常量以便电机工作时有足够的电压差可以使电机达到额定转速并具有足够的转矩。当电机超过额定转速工作时,反电动势会持续上升,这时加在电机绕组间的有效电压会下降,电流会减少,扭矩会下降,当反电动势和供电电压相等的时候,电流降为0,扭矩为0,电机达到极限转速
版权所有©2025 产品网