永磁同步电机因具有高功率密度、***率等优点,被广泛应用于电动汽车的驱动系统中。钕铁硼(NdFeB)永磁材料由于具有较高的磁能积(BH)max、剩磁Br和矫顽力Hc,风机 永磁同步电机,被广泛应用于永磁电机。但钕铁硼永磁材料的热稳定性不够理想,磁性温度系数较高,高温运行时可能导致严重磁损,且在某些工况下若电流激增,也将导致不可逆退磁。本文作者以一台在温升试验中发生转子退磁故障的电机为例,对失效原因进行分析,找出引发退磁的相关影响因素和风险程度,同时验证电机的稳定性和可靠性。
1 试验现象
文中所研究的对象为某高速电机,该电机为钕铁硼永磁同步电机,冷却方式为水冷,转速15 000 r/min。
为验证该电机在高速工况下运行的可靠性,计划进行连续3个高速负载工况的台架温升试验。工况一:15 000 r/min@55 kW,测试时长45 min;工况二:15 000 r/min@70 kW,测试时长6 min;工况三:15 000 r/min@100 kW,测试时长60 s。在实际试验过程中,在工况三进行到23 s时,电机温度达到许用温度179 ℃,软件报故障停机。清除故障重新上电后,发现电机的输出功率明显小于输入功率。随后测量了电机的反电动势,与正常值相比下降了50%左右,如图1所示。由此判断,电机转子发生了不可逆退磁。
2 失效件拆解
将转子总成从电机中拆出后,用磁极观察片观察发现,转子中间区域退磁严重。
进一步拆解转子,透过观察片观察单片磁钢,发现部分磁钢局部退磁且存在磁极反向现象。
拆解转子中的每一片磁钢,逐个检测磁通,并按照磁钢所在的铁芯层(共6层)和转子周向角度位置绘制各层磁钢的磁通分布曲线,如图3所示,可以得出,不同铁芯层中的磁钢退磁程度差异较大,转子两端(1、2、6层)的磁钢退磁不明显,而转子中间层(3、4、5层)的磁钢退磁较为明显,特别是第4层退磁***为严重。
永磁同步电动机是交感应电动机的一个日益增长的替代品,几十年来,交感应电动机几乎一直是所有电机应用的主力军。保持了交感应电机的可靠性和简单性,同时提供了更高的效率、同步运行和使用更小框架尺寸的机会。用永磁体(通常由稀土金属合金制成)代替转子导体中感应的磁场,永磁同步电机控制技术杨,使其电阻损耗比交感应电机低得多,广东永磁同步电机,因为转子中没有感应电流。为了代替机械换向,需要一个控制系统来确定向哪些线圈提供电流以产生大扭矩。稀土永磁交流电动机产生的磁场可以提供与交感应电动机相同的转矩,而交感应电动机的电机更小、更轻。
电机设计过程涉及一些基本考虑因素,对于启动器,应用环境的要求,什么时候需要什么扭矩和速度,多久需要一次?什么是工作循环?温度和压力等环境条件是什么?即使是***的电机,如果电机应用错误的领域,其不会发挥大的效率。许多电动机都用于齿轮电动机、齿轮减速器和电动机的组合。齿轮马达以低速提供高扭矩,简言之,齿轮电机在放大扭矩的同时,会吸收电机功率并降低转速,齿轮电机占空比会影响电机的性能额定值,例如连续的占空比。
佳冷却设计外壳
一个冷却较好的马达运转效率更高,为了获得佳的气流,优化了冷却风扇和风扇罩的设计,确保定子和电机外壳之间的紧密结合提佳的冷却性能。电机的电效率提高了很多,但冷却风扇的功率占总损耗的比例更大。冷却风扇尺寸的优化包括使用风扇的小功率,同时提供足够的冷却。优化的风扇设计可使风扇功率需求降低65%,一个重要的设计特点是叶片和壳体之间的间隙。外壳和风扇叶片之间的空间应尽可能小,以防止湍流和减少回流。
电动机按其工作电流分类,可分为直流电动机和交流电动机。长期以来,直流电动机由于成熟稳定的调速技术优点,广泛应用在工业过程中,但其结构复杂、故障率高,不能满足离散的动态环境。随着新型电力电子器件的发明及推广和计算机控制技术的发展,现阶段的纯电动轿车普遍选用交流电机驱动系统。
近年来,随着第3代稀土永磁材料性能的不断提高,具备剩磁高、矫顽力高、磁性能高等优点使其在工业中得到了广泛的应用。乘用车行业中,永磁同步电机具备功率因数高、效率高、启动转矩大、功率密度高及可靠性高等优点使其在驱动电机系统的使用中占有主导地位。
1.2 永磁同步电机工作原理
长期以来,制约交流电机控制技术发展的是转矩和磁链的耦合性,使其控制精度难以提升。20世纪60~70年代,空调永磁同步电机效率,K.Hasse和F.Blaschke提出了控制定子电流矢量技术,也叫矢量控制技术,实现了磁链和转矩解耦,永磁同步电机也是采用此控制方式。
矢量控制技术是通过调节电枢电流和磁场电流来控制电机。现在有些企业为了提高转矩的响应速度,通过直接调节工作电压来改变定、转子磁链的夹角来控制电机的输出转矩即直接转矩控制技术。近年来,中研人员对其改进技术也在不断探索。恒转矩角、单位功率因数(UPF)、磁通与电流相量角控制、单位电流转矩、恒功率损耗及效率等控制方法可根据需要叠加用于矢量控制中。现实中永磁同步电机的控制受到车载动力电池的电压和电流的限制,在转速增加到一定的数值后,需要削弱气隙磁链来***感应反电动势,也就是弱磁控制技术。
依据控制策略及永磁同步电机自身特性,其在纯电动轿车中的应用曲线可近似总结为基速以下恒转矩控制、基速以上恒功率控制
版权所有©2025 产品网