永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。
1、转速闭环恒压频比控制
转速闭环恒压频比控制是一种常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,营口永磁同步电机,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,车用永磁同步电机生产厂家,仍是首的方法。
2、转差频率控制
转差频率控制的突出优点就在于频率控制环节的输入是转差信号,永磁同步电机 生产企业,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩,但它依据的只是稳态模型,并不能真正控制动态过程中的转矩,从而得不到很理想的动态控制性能。
永磁同步电动机与电励磁凸极同步电动机有着相似的内部电磁关系,故可采用双反应理论来研究。需要指出的是,由于永磁同步电动机转子直轴磁路中永磁体的磁导率很小(对稀土永磁来说其相对磁导率约为1),使得电动机直轴电枢反应电感一般小于交轴电枢反应电感,分析时应特别注意这一点。
3、永磁同步电动机的损耗分析
永磁同步电动机稳态运行时的损耗包括四项:①定子绕组铜损耗,主要是由于定子绕组通过电流生的电阻损耗;②铁心损耗,主要是定子铁心中通过的交变磁场引起的涡流损耗和磁滞损耗;③机械损耗,是电动机旋转过程中产生的摩擦损耗;④杂散损耗,低速车永磁同步电机,主要是由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。
4、永磁同步电动机的***率点分析
异步起动永磁同步电动机通常被用作***电动机以替代力能指标较低的感应电动机,调速永磁同步电动机也为了减小变频电源的视在容量而要求电动机具有较高的效率和功率因数。因此,有必要进一步研究分析永磁同步电动机的***率点。
电动机按其工作电流分类,可分为直流电动机和交流电动机。长期以来,直流电动机由于成熟稳定的调速技术优点,广泛应用在工业过程中,但其结构复杂、故障率高,不能满足离散的动态环境。随着新型电力电子器件的发明及推广和计算机控制技术的发展,现阶段的纯电动轿车普遍选用交流电机驱动系统。
近年来,随着第3代稀土永磁材料性能的不断提高,具备剩磁高、矫顽力高、磁性能高等优点使其在工业中得到了广泛的应用。乘用车行业中,永磁同步电机具备功率因数高、效率高、启动转矩大、功率密度高及可靠性高等优点使其在驱动电机系统的使用中占有主导地位。
1.2 永磁同步电机工作原理
长期以来,制约交流电机控制技术发展的是转矩和磁链的耦合性,使其控制精度难以提升。20世纪60~70年代,K.Hasse和F.Blaschke提出了控制定子电流矢量技术,也叫矢量控制技术,实现了磁链和转矩解耦,永磁同步电机也是采用此控制方式。
矢量控制技术是通过调节电枢电流和磁场电流来控制电机。现在有些企业为了提高转矩的响应速度,通过直接调节工作电压来改变定、转子磁链的夹角来控制电机的输出转矩即直接转矩控制技术。近年来,中研人员对其改进技术也在不断探索。恒转矩角、单位功率因数(UPF)、磁通与电流相量角控制、单位电流转矩、恒功率损耗及效率等控制方法可根据需要叠加用于矢量控制中。现实中永磁同步电机的控制受到车载动力电池的电压和电流的限制,在转速增加到一定的数值后,需要削弱气隙磁链来***感应反电动势,也就是弱磁控制技术。
依据控制策略及永磁同步电机自身特性,其在纯电动轿车中的应用曲线可近似总结为基速以下恒转矩控制、基速以上恒功率控制
版权所有©2025 产品网