精密数控机床基础技术:直线导轨机床安装结构设计
机床进给装置包括床身和位于床身上的拖板组件,拖板组件包括纵拖板和 位于纵拖板上方横拖板,床身上具有纵导轨,纵拖板位于纵导轨上,纵拖板上表面具有横 导轨,横拖板位于横导轨上,纵拖板和横拖板均通过电机、丝杆螺母来控制以实现各自的移 动。因为拖板组件还需要在床身具有的导轨上进给运动,各个零部件之间的位置关系 和进给运动精度都是通过床身来保证的,这就要求机床床身具有足够的刚性、抗震性和耐 磨性。现有的机床床身都由床身本体和本体上具有的导轨组成,导轨为两根平行设置的平 导轨或斜导轨,为了保证导轨处的加工精度和耐磨性,导轨一般都经过高频淬火,但是经过 处理后的床身导轨的导轨面仍磨损较快,因此有人对机床床身作出了改进,其包括与底座为一体的床身体、设置在床身体顶部两端的消气槽、分别 设置于一端的消气槽内外边的尾座移动 V 型面和尾座移动面以及分别设置于另一端的消 气槽外内边的床鞍移动 V 型面和尾座移动面、在床鞍移动 V 型面和尾座移动 V 型面一端的 尾座移动面下方设置有床身下滑面以及在床身下滑面靠近床身体处开有床鞍限位槽 ;在所 述床身下滑面上具有淬火形成的耐磨层。
机床用床身在导轨下滑面上设置淬火层,提高了床身导轨下滑面的硬度,提 高了耐磨性,但是床身导轨的整体耐磨性仍然不高,导轨均呈 V 型面,承载能力较差,加工 精度不好保证,且加工要求较高,导致制造成本较高。此外拖板组件工作时,横拖板在纵拖 板具有的横导轨上移动,因在纵拖板上加工横导轨的加工要求较高,横导轨的精度还不是 很高,刚性和承载能力都不理想。
数控机床的常见故障排除方法
由于数控机床故障比较复杂, 同时数控系统自诊断能力还不能对系统的所有部件进行测试, 往往是一个报指示出众多的故障原因, 使人难以入手。下面介绍维修人员任生产实践中常用的排除故障方法。
直观检查法
直观检查法是维修人员根据对故障发生时的各种光、声、味等异常现象的观察, 确定故障范围, 可将故障范围缩小到一个模块或一块电路板上, 然后再进行排除。
初始化复位法
一般情况下, 由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障。若系统工作存贮区由于掉电、拨插线路板或电池欠压造成混乱, 则必须对系统进行初始化清除, 清除前应注意作好数据拷贝记录, 若初始化后故障仍无法排除,则进行硬件诊断。
自诊断法
数控系统已具备了较强的自诊断功能, 并能随时监视数控系统的硬件和软件的工作状态。利用自诊断功能, 能显示出系统与主机之间的接口信息的状态, 从而判断出故障发生在机械部分还是数控部分, 并显示出故障的大体部位( 故障代码) 。
功能程序测试法
功能程序测试法是将数控系统的功能用编程法编成一个功能试验程序, 并存储在相应的介质上, 如纸带和磁带等。在故障诊断时运行这个程序, 可快速判定故障发生的可能起因。功能程序测试法常应用于以下场合: 机床加工造成废品而一时无法确定是编程操作不当、还是数控系统故障引起; 数控系统出现随机性故障, 一时难以区别是外来干扰, 还是系统稳定性个好; 闲置时间较长的数控机床在投入使用前或对数控机床进行定期检修时。
数字控制车床的基础功能详解-主轴功能(S功能)
主轴转速指令功能,它是由地址S及其后面的数字表示,目前有S2(两位数),S4(四位数)的表示法,即SXX和SXXXX,一般的经济型数控车床一般用一位或两位约定的代码来控制主轴某一档位的高速和低速对具有无级调速功能的数控车床,则可由后续数字直接表示其主轴的给定转速(r/min),另外,对具有恒线速度切削功能的数控车床,其加工程序中的S指令即可指令恒定转速转/分,也可指令车削时的恒定线速度(米/分)即在车削时,其主轴转速随着车削直径的变化而自动变化,绐终保持线速度为给定的恒定值。
①S两位数:国内的数控车床一般用一位或两位数字约定的代码表示,本文介绍的GSK928TA数控系统,对应机床提供的6级主轴 机械 换档(每个档位高速档和低速档)用S1为高速,S2低速,还要用M代码来主轴旋转方向,M3正转,M4反转,这里的高速,低速只是相对于机床的的某个机械档位而言的。
②S四位数:用地址S和其后面的4位数值直接指令轴的转数(转/分)。如S1200 表示主轴恒定转速为每分钟1200转,对于具有恒线速控制功能的数控系统,则S后面的线速度是恒定的,随着车削直径的变化,根据给定线速度计算出主轴转速,使得刀具瞬间的位置与工件表面保持恒定关系。用G96(恒线速控制指令),G97(主轴转速)来配合S代码来主轴的速度。例:G96 S18表示切削速度为18米/分;G97 S1200表示取削G96主轴转速为1200转/分。 具体的主轴功能的使用还要参数控系统的说明书。
版权所有©2025 产品网