传统金属封装材料及其局限性芯片材料如Si、GaAs以及陶瓷基板材料如A12O3、BeO、AIN等的热膨胀系数(CTE)介于3×10-6-7×10-6K-1之间。金属封装材料为实现对芯片支撑、电连接、热耗散、机械和环境的保护,应具备以下的要求:①与芯片或陶瓷基板匹配的低热膨胀系数,减少或避免热应力的产生;但密度大也使Cu/W具有对空间辐射总剂量(TID)环境的优良屏蔽作用,因为要获得同样的屏蔽作用,使用的铝厚度需要是Cu/W的16倍。此外,不同产品的装夹方式不同,在加工前要设计好夹具,部分结构复杂产品需要做专门的夹具 Cu/W和Cu/Mo为了降低Cu的CTE,可以将铜与CTE数值较小的物质如Mo、W等复合,得到Cu/W及Cu/Mo金属-金属复合材料。新型的金属封装材料及其应用除了Cu/W及Cu/Mo以外,传统金属封装材料都是单一金属或合金,它们都有某些不足,难以应对现代封装的发展。金属封装外壳CNC与压铸结合就是先压铸再利用CNC精加工。工艺优缺点:CNC工艺的成本比较高,材料浪费也比较多,当然这种工艺下的中框或外壳质量也好一些。
世界各国常有Al2O3弥散加强无氧运动高导铜商品,如美国SCM金属制造公司的Glidcop带有99.7%的铜和0.3%弥散遍布的Al2O3。添加Al2O3后,导热系数稍有降低,为365W(m-1K-1),电阻略微提升,为1.85μΩ·cm,但抗拉强度获得持续上升。假如制取的Cu/W及Cu/Mo高密度水平不高,则密封性无法得到确保,危害封装特性。这类原材料已在金属封装中获得普遍应用,如美国Sinclair公司在功率器件的金属封装中应用Glidcop替代无氧运动高导铜做为基座。美国Sencitron公司在TO-254气密性金属封装中应用陶瓷绝缘子与Glidcop导线封接。金属表面处理解决多种形式、生产加工灵便,能够和一些构件(如混和集成化的A/D或D/A转化器)结合为一体,合适于低I/O数的单芯片和多集成ic的主要用途,也合适于频射、微波加热、光学、声表面波和大功率器件,能够考虑批量生产、销售电价的规定。
金属表面处理压铸成型工艺:全压铸的工艺和塑料制品的生产流程十分相似,都是利用精密模具进行加工,只是材质由塑料改成了融化的金属;CNC与压铸结合工艺;铝挤、DDG、粗铣内接着将铝合金板铣成手机机身需要的尺寸,方便CNC精密加工,接着是粗铣内腔,将内腔以及夹具***的柱加工好,起到精密加工的固定作用。国内外已广泛生产并用在大功率微波管、大功率激光二极管和一些大功率集成电路模块上。世界各国已普遍生产制造并且用在功率大的微波加热管、大功率激光二极管和一些功率大的集成电路芯片控制模块上。由于Cu-Mo和Cu-W之间不相溶或浸润性极差,况且二者的熔点相差很大,给材料制备带来了一些问题;如果制备的Cu/W及Cu/Mo致密程度不高,则气密性得不到保证,影响封装性能。另一个缺点是由于W的百分含量高而导致Cu/W密度太大,增加了封装重量。
版权所有©2024 产品网