马鞍山人脸识别算法欢迎来电“本信息长期有效”
作者:芜湖一路机电2020/4/30 8:15:34





人脸识别门禁机是采用当今国际科技领域高精技术——人脸识别技术(融合了计算机图像处理技术与生物统计学原理于一体),利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析并建立人脸特征模板。 ...

人脸识别门禁系统更安全、更便捷、更智能。人脸识别门禁系统解决了老式门禁刷咔容易被复刻所带来的安全隐患问题;人脸识别门禁系统,具有主动捕抓人脸的功能,刷一刷脸就可进门,无需动手、刷***或者输密码,做到使用的人性化。

智能门禁系统是通过视频云进行人脸识别的,是必须有联网功能 ; 门禁系统在识别出预设人脸时,能够正常打开门,如果识别到非名单的人脸,则会将信息发送到户主手机上; 面部识别门禁系统也能够通过密码及***开门,支持多种开门方式。







人脸识别的研究不断深入,研究者开始关注面向真实条件的人脸识别问题,主要包括以下四个方面的研究:

1)提出不同的人脸空间模型,包括以线性判别分析为代表的线性建模方法,以Kernel方法为代表的非线性建模方法和基于3D信息的3D人脸识别方法。

2)深入分析和研究影响人脸识别的因素,包括光照不变人脸识别、姿态不变人脸识别和表情不变人脸识别等。

3)利用新的特征表示,包括局部描述子(Gabor Face, LBP Face等)和深度学习方法。

4)利用新的数据源,例如基于视频的人脸识别和基于素描、近红外图像的人脸识别。






影响人脸识别系统对人脸采集的主要因素有哪些?

1.图像大小:人脸图像过小会影响识别效果,人脸图像过大会影响识别速度。非***人脸识别摄像头常见规定的蕞小识别人脸像素为60*60或100*100以上。在规定的图像大小内,算法更容易提升准确率和召回率。图像大小反映在实际应用场景就是人脸离摄像头的距离。

2.图像分辨率:越低的图像分辨率越难识别。图像大小综合图像分辨率,直接影响摄像头识别距离。现4K摄像头看清人脸的***远距离是10米,7K摄像头是20米。

3.光照环境:过曝或过暗的光照环境都会影响人脸识别效果。可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。

4.模糊程度:实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗模糊的功能,而在成本有限的情况下,考虑通过算法模型优化此问题。

5.遮挡程度:五官无遮挡、脸部边缘清晰的图像为蕞佳。而在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。

6.采集角度:人脸相对于摄像头角度为正脸蕞佳。但实际场景中往往很难抓拍正脸。因此算法模型需训练包含左右侧人脸、上下侧人脸的数据。工业施工上摄像头安置的角度,需满足人脸与摄像头构成的角度在算法识别范围内的要求。








商户名称:芜湖市一路机电工程有限公司

版权所有©2025 产品网