影响自动化检测设备效果的因素有哪些?
视觉检测包含一些重要部件,光源,镜头,相机,图像采集卡,数据传输,图像处理和测量软件等。随着各个部件的性能的提升,机器视觉系统的能力也呈指数级增长。系统的复杂度取决于特定的应用需求。选择佳部件,不仅仅要考虑部件的性能能否满足需求(比如分辨率,帧率,测量算法等),同时需要考虑系统终所处的环境条件。比如在工业领域,这些环境条件包含部件变化,移载,***,处理接口,振动,环境光,温度,灰尘,油污,水,电磁辐射等。在极端恶劣条件下,有时候需要将机器视觉组件添加保护措施。典型的例子,有些相机需要在相对洁净环境下使用。不过,通常情况下,工业环境是能够满足工业机的直接使用的。
机器视觉检测技术的核心—图像处理技术
图像采集,如果相机是模拟信号输出,需要将模拟图像信号数字化后送给计算机(包括嵌入式系统)处理。现在大部分相机都可直接输出数字图像信号,可以免除模数转换这一步骤。不仅如此,现在相机的数字输出接口也是标准化的,如USB、VGA、1394、HDMI、WiFi、Blue Tooth接口等,可以直接送入计算机进行处理,以免除在图像输出和计算机之间加接一块图像采集卡的麻烦。后续的图像处理工作往往是由计算机或嵌入式系统以软件的方式进行。
图像分割
图像分割就是按照应用要求,把图像分成各具特征的区域,从中提取出感兴趣目标。在图像中常见的特征有灰度、彩色、纹理、边缘、角点等。例如,对汽车装配流水线图像进行分割,分成背景区域和工件区域,提供给后续处理单元对工件安装部分的处理。
图像分割多年来一直是图像处理中的难题,至今已有种类繁多的分割算法,但是效果往往并不理想。近来,人们利用基于***网络的深度学习方法进行图像分割,其性能胜过传统算法。
版权所有©2025 产品网