预防焊接热裂纹的方法:
1.限制钢材和焊材中,易产生偏析的元素和***杂质的含量,特别是S、P、C的含量,因为它们不仅形成低熔点共晶,而且还促进偏析。C≤0.10%热裂纹敏***可大大降低。必要时对材料进行化学分析、低倍检验(如硫印等)。
2.调节焊缝金属的化学成分,改善***、细化晶粒,提高塑性,改变***杂质形态和分布,减少偏析,如采用奥氏体加小于6%的铁素体的双相***。
3.提高焊条和焊剂的碱度,以减低焊缝中杂质的含量,改善偏析程度。
4.选择合理的坡口形式,焊缝成型系数ψ=b/h>1,避免窄而深的“梨形”焊缝,(焊接电流过大也会形成“梨形”焊缝),防止柱状晶在焊道中心会合,产生中心偏析形成脆断面;采用多层多道焊,打乱偏析聚集。
5.采用较小(适当)的焊接线能量,对于奥氏体(镍基)不锈钢应尽量采用小的焊接线能量(不预热、不摆动或少摆动、快速焊、小电流)、严格掌握层间温度,以缩短焊缝金属在高温区的停留时间;
6.注意收弧时的保护,收弧要慢并填满弧坑,防止弧坑偏析产生热裂纹;
7.尽量避免多次返修,防止晶格缺陷聚集产生多边化热裂纹。
预防未焊透的方法:
1.控制好坡口尺寸:间隙、钝边、角度及错口等;
2.控制电流、极性和焊速;使接头充分预热,建立好一个熔池;
3.控制焊条直径和焊接角度;克服电弧偏吹;
4.双面焊清根一定要彻底;
5.坡口及钝边上的油、锈、渣、垢一定要清理干净。
预防再热裂纹的方法
1.选材时应注意能引起沉淀析出的碳化物形成元素,尤其是V的含量。必须采用高V钢材时,焊接及热处理时要特别加以注意。
2.热处理时避开再热敏感区,可减少再热裂纹产生的可能性,必要时热处理前做热处理工艺试验。
3.尽量减少残余应力和应力集中,减少余高、消除咬边、未焊透等缺陷,必要时将余高和焊趾打磨圆滑;提高预热温度,焊后缓冷,降低残余应力。
4.适当的线能量,防止热影响区过热,晶粒粗大。
5.在满足设计要求的前提下,选用低一个强度等级的焊条,让其释放一部分由热处理过程消除的应力,(让应力在焊缝中松弛),对减少再热裂纹有好处。
马氏体不锈钢焊接要点
对于Cr13型马氏体不锈钢,当采用同材质焊条进行焊接时,为了降低冷裂纹敏***,确保焊接接头塑、韧性,应选用低氢型焊条并同时采取下列措施:
① 预热。预热温度随钢材含碳量的增加而进步,一般在100℃ ~ 350℃范围内。
② 后热。对于含碳量较高或拘束度大的焊接接头,焊后采取后热措施,以防止焊接氢致裂纹。
③ 焊后热处理。为改善焊接接头塑、韧性和耐蚀性,焊后热处理温度一般为650℃ ~ 750℃,保温时间按1h / 25mm计。
对于超级及低碳马氏体不锈钢,一般可不采取预热措施,当拘束度大或焊缝中含氢量较高时,采取预热及后热措施,预热温度一般为100℃ ~ 150℃,焊后热处理温度为590 ~ 620℃。
对于含碳量较高的马氏体钢。或在焊前预热、焊后热处理难以实施,以及接头拘束度较大的情况下,工程中也可用奥氏体型的焊材,以进步焊接接头的塑、韧性,防止产生裂纹。但此时焊缝金属为奥氏体***或以奥氏体为主的***时,与母材强度相比实为低强匹配,而且焊缝金属与母材在化学成分、金相***、热物理性能差别很大,焊接残余应力不可避免,轻易引发应力腐蚀或高温蠕变***。
随着信息科技的进步,机械化、工业化逐渐成为企业生产的主旋律,机器人越来越主流。焊接机器人作为工业机器人的重要组成部分,占据工业机器人总量40%以上,技术创新能力和国际竞争能力明显增强,因此,焊接机器人有望迎来第二春。
焊接机器人凭借可以稳定和提高焊接质量;改善工人劳动强度,可在***环境下工作;缩短产品改型换代的准备周期,减少相应的设备***等众多优点,已经可以代替人力在各类操作环境下稳定运行施工,并且在各行各业已得到了广泛的应用。
焊接机器人发展的如此迅猛,焊工的饭碗确实不再稳固。
焊接机器人的工作效率基本可以代替3-4名电焊工人同时工作所达到的效果,并且还具备了以下人工难以拥有的优势:
1. 稳定和提高焊接质量,保证其均一性。
焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定作用。采用机器人焊接时对于每条焊缝的焊接参数都是恒定的,焊缝质量受人的因素影响较小,降低了对工人操作技术的要求,因此焊接质量是稳定的。而人工焊接时,焊接速度、干伸长等都是变化的,因此很难做到质量的均一性。
2. 改善了工人的劳动条件。
采用机器人焊接工人只是用来装卸工件,远离了焊接弧光、烟雾和飞溅等,对于点焊来说工人不再搬运笨重的手工焊钳,使工人从大强度的体力劳动中解脱出来。
版权所有©2025 产品网