人脸识别难的部分是有充分适应各大光线环境的人脸预处理算法,需要在各种复杂的光线环境中提取到人脸信息,特别是移动互联网时代,摄像头拍照的地方可以在斑驳的树影下,也可以在昏暗的街灯下,以及深夜出租车内,这对算法的鲁棒性考验极大。同时还要考虑照片和视频欺诈,二次成像的光线污染等问题。
人脸识别技术主要是利用图像处理技术从图像中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,廊坊人脸识别一体机多少钱,即人脸特征点模型。再从人脸特征点模型与被测者的人的面像进行特征分析(可以假定为无数的几何特征点求解),根据分析的结果来给出一个相似值,智能人脸识别一体机多少钱,通过这个值即可确定是否为同一人。简单的说就是A/B两张照片比对,产生的计算数值是否达到要求。
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
版权所有©2025 产品网