焊接机器人作为现代制造业的主体装备成员,在工业生产现场得到了广泛的应用。然而,由于受关节自由度和作业可达空间的限制,单一的通用焊接机器人所能完成的焊接任务是十分有限的,所以在面对复杂焊接任务的生产环节,比如汽车底盘和车身的生产,就不得不用大量的焊接机器人来协同完成,于是我们就看到数十台甚至上百台焊接机器人同时工作在同一生产线上的壮观场面。其实,大型焊接变位机,这既是工业生产现代化的写照,也是单一焊接机器人能力局限的结果。
焊接机器人技术的发展,从宏观上讲大体是两个方向。一是从焊接过程的质量控制,比如提高焊缝跟踪轨迹精度等,从焊接工艺的角度来提高焊接质量。二是焊接机器人作业能力的拓展,变位机就属于这一类。本质上变位机是焊接机器人关节自由度的拓展和作业空间的延伸。变位机的应用使得单台焊接机器人的作业灵活性更强,自动变位机,焊接工件的尺寸理论上也不再受限于机器人自身的作业空间。变位机的出现很大程度上弥补了过去焊接作业中的种种局限性。可以说,变位机已经成为焊接机器人突破自身局限的新支点。毫无疑问,变位机成功应用的关键是与焊接机器人的协调控制,通俗地讲,变位机厂家,就是两者之间的有效配合。
针对焊接机器人和变位机***的运动控制器设计
对于已购置成品工业机器人的企业,由于是封闭式的控制系统,除非购置同样厂家的变位机,否则很难和其他厂家的变位机实现统一控制。因此,客观上需要我们去采用***式控制方法,分别控制焊接机器人本体和变位机的运动。为保证焊接精度的要求,必须要将焊接机器人和变位机的相对位置精度限定在一个极xiao的范围内。硬件架构如图4所示。
针对这种设计目标的一般方法是:焊接加工前,通过焊接机器人内建的注信息功能创建和保存运动类型和变位机速度,并在变位机控制器上另建文件保存与焊接机器人对应的变位机位置信息,广州变位机,然后在加工前按照上述的控制方法生成焊接机器人和变位机的加工文件。执行焊接工作时,分别由机器人和变位机控制器解析执行。这种设计方法的基础在于求解工件焊接轨迹在用户坐标系下的位置。在焊接前,先要建立用户坐标系,确定变位机相对于焊接机器人的位置,然后求得焊缝轨迹在该坐标系下的表达式,***后确定变位机运动控制函数,并由机器人和变位机的运动关系求得机器人的空间运动轨迹。因为焊接机器人和变位机采用的是两套不同的控制系统,要保证协同作业还需要统一的时钟触发,这点应该在硬件系统控制中予以实现,如统一这两个系统的指令信号时钟,实现同步触发。此外,在示教过程中,示教文件和加工文件的文件结构设计亦不容轻视。
除了变位机运动控制算法的建立,变位机运动轨迹的圆滑度和机器人配合运动的复杂度也同样重要。为使变位机运动保持运动的平稳性,需要利用高ji插值算法对变位机示教点做拟合,实现圆滑过渡。另外可以采用小线段拟合的方法,这样可以将机器人空间运动轨迹分割成一个个小的线段。这样就大大减少了焊机器人所需的控制点数,有利于实现二者协同工作。
国内在对分离式变位机的相关研究直到近期才逐渐开始,高性能的变位机目前还不普及,大多数现场应用的变位机只能实现简单的、基本的预设动作,复杂焊接轨迹的协调运动还未在大规模工业加工场合中实现。
版权所有©2025 产品网