我们的1000t/d篦冷却器的1号风扇为9-19No7.1D,电机为Y250M-2,55kW,运行期间轴承温度较高,主轴承温度升至90°C,允许使用温度约为10°C。为了继续生产,它只需要用水冷却,速度从2970转/分钟降低到2700转/分钟。但是,3小时后,轴承温度不能降低。***后,轴承被加热并锁定,电机跳了起来。停机检查后,两个22316CA轴承没有缺油,也没有内圈和外圈。当时风扇的振动不大。因此,怀疑轴承本身是由问题引起的,并且长期温度高,导致轴承失效。更换两个22316CA轴承后,旋转灵活,但在启动后,轴承温度迅速上升,上升速度不会降低,因此必须再次关闭。离心式风扇与其他风扇的不同之处在于其工作介质流入和流出风扇的轴向,需要在离心力的作用下工作。在分析之后,轴承温度高的原因是轴承在工作时间隙小,这可能是由于轴承本身的间隙小或轴承箱盖的紧固螺栓拧紧造成的。检查发现同一批轴承的间隙为0.06mm,而轴承手册,22316轴承间隙为0.05~0.08mm,这表明轴承本身没有问题,但22316轴承的极限速度正在使用中当油润滑为2600转/分钟时,在正常生产中低于2970转/分钟,也就是说,轴承的选择是有问题的。
当使用22316CC/W33轴承时,考虑使用油润滑时极限转速为3000r。闵,更合适,但在轴承缺货的情况下,为了产生一个增加轴承工作间隙的运行操作,即在轴承座和上盖之间留下间隙,但这样连接螺栓很容易松动,可能会磨损外圈。为此,我们在轴承座和上盖的连接表面上添加了三层描图纸。连接螺栓仍然按原始程度拧紧。进行试验时,轴承温度在生产后是正常的。积极开发新的产品,产品广泛应用于机械、化工、轻纺、冶金、电子、食品、宾馆、饭店等行业。运行中的轴承温度仅为52°C,解决了轴承温度高的问题。
排烟风量计算、压力损失计算、选用风机都是排烟系统设计的关键,还在沿用经验算法,不计算阻力大小,选用风机就失去了技术依据,失去了技术基础。其实,只要认真学,认真用,认真做过一次,就会豁然开朗。方法流程一旦掌握,不断扩展就会熟能生巧,胸有成竹。2,气力输送:如大豆皮,粘土的运输,皮/籽粒的选择,煤灰的运输。
由于为了***,不顾系统设计效果,运行效果,层层加码,大多系统工作在低效工作区。这实际是技术修为不到位,信心不足,底气不足的体现。后果是造成的能耗浪费非常巨大,一台风机多几个kw,一个厨房几台排烟风机,一年就是几万元电费白白浪费了。
***近看到很多设计方案的不足,实在令人担忧,也是应大家的要求制作如下图片,文字简练一点,便于大家交流。
当风扇旋转时,叶轮的速度随着风扇半径的变化而变化。因此,具有效率的叶片应该是后弯曲螺旋叶片。在实际应用中,通常使用弯曲叶片,入口和出口的角度相匹配,以达到风扇所需的性能参数。通过限定曲率和倾斜角的半径来实现这些角度。对于翼型叶片,叶片宽且曲率平缓,因此该叶片的效率将相对提高。倾斜(前/后)叶片是一种折衷方案,必须在风扇向灰尘输送气体时选择。在多尘输送系统中,自清洁倾斜(前,后)叶片,但为了使倾斜叶片效率超过80%,有必要结合更复杂的风扇设计。实现。低压离心风机:全压不超过1000Pa中压离心风机:全压在1000-3000Pa之间高压离心风机:全压大于3000Pa注意:全压可以很容易地理解为风扇发出的风强度。例如,BFBI(BF Backward)系列的Halifax粉丝。这一系列风扇效率赢得了弯曲叶片风扇,叶片曲率和倾斜角度设置与风扇入口和出口角度***匹配,使风扇效率远高于80%。
叶轮在平衡床上做动平衡配重,实际上是对叶轮的***进行调整,使***尽量处在轴线上。但在平衡床上做动平衡配重存在3点不足(无论是单面还是双面):
1) 平衡床的转速一般只有几百转,与实际使用时有很大的差距;
2) 叶轮在平衡床做动平衡配重,受空气阻力的影响。如果是在真空和失重状态下做动平衡配重,叶轮的***偏移量可以做得更小一些;
3) 动平衡方式的不同,使动平衡余量不同。如平衡床上是F型传动做的,风机可能是D型传动的。这样,叶轮的质心不可能完全在叶轮的几何圆心上。
1.2 气动干扰力
同样,由于制造误差和材料不均匀等原因,风机运行时,气流作用在各叶片及叶轮各部位的作用力就不一样,无法使它的合力等于零。这样,就产生了气动干扰力,主要有:
1.2.1 叶片的差异引起干扰力
叶轮在制造时是存在误差的,如各叶片的角度、方向、轮盘及轮盖的间隙都可能存在差异。由于生产上差异的存在,运行时各叶片所受到的气体反作用力之和不等于零,即∑F=F1 F2 F3 … Fn≠0, 就产生了气动干扰力。
版权所有©2025 产品网