我们的1000t/d篦冷却器的1号风扇为9-19No7.1D,电机为Y250M-2,55kW,运行期间轴承温度较高,主轴承温度升至90°C,允许使用温度约为10°C。为了继续生产,它只需要用水冷却,速度从2970转/分钟降低到2700转/分钟。但是,3小时后,轴承温度不能降低。***后,轴承被加热并锁定,电机跳了起来。停机检查后,两个22316CA轴承没有缺油,也没有内圈和外圈。离心式风扇的有效功率是指每单位时间气体从叶轮获得的能量,并且存在Ne=Qp,N=Ne/η=Qp/η。当时风扇的振动不大。因此,怀疑轴承本身是由问题引起的,并且长期温度高,导致轴承失效。更换两个22316CA轴承后,旋转灵活,但在启动后,轴承温度迅速上升,上升速度不会降低,因此必须再次关闭。在分析之后,轴承温度高的原因是轴承在工作时间隙小,这可能是由于轴承本身的间隙小或轴承箱盖的紧固螺栓拧紧造成的。检查发现同一批轴承的间隙为0.06mm,而轴承手册,22316轴承间隙为0.05~0.08mm,这表明轴承本身没有问题,但22316轴承的极限速度正在使用中当油润滑为2600转/分钟时,在正常生产中低于2970转/分钟,也就是说,轴承的选择是有问题的。
当使用22316CC/W33轴承时,考虑使用油润滑时极限转速为3000r。闵,更合适,但在轴承缺货的情况下,为了产生一个增加轴承工作间隙的运行操作,即在轴承座和上盖之间留下间隙,但这样连接螺栓很容易松动,可能会磨损外圈。为此,我们在轴承座和上盖的连接表面上添加了三层描图纸。效率η:在风机的实际运行中,由于各种能量损失,实际(有效)扬程和流量都低于理论值,而输入功率高于理论值。连接螺栓仍然按原始程度拧紧。进行试验时,轴承温度在生产后是正常的。运行中的轴承温度仅为52°C,解决了轴承温度高的问题。
离心风机的振动是用户和制造厂家共同关注的问题。振动超标,会使轴承温度上升,磨损加剧,严重的还会使地脚螺栓断裂,轴承箱体开裂,甚至会使叶轮开裂和解体。
减小振动的办法是进行动平衡:叶轮平衡和整机动平衡。
为什么叶轮在动平衡机上达到标准,还要进行整机动平衡,因为风机的振动是由周期性的干扰力产生。根据机械振动的公式:X=-F/K,在弹性形变范围之内,振动的大小X与干扰力F成正比,与系统的刚性K成反比。
1 风机所受的主要干扰力
风机运行时受到空间力系的作用。在这一力系中,不做周期性变化的力,不产生干扰力,如重力、轴承座对轴承的反作用力等等,它们称为静反力。周期性的干扰力称为动反力。周期性干扰力包括3种。
1.1 偏心干扰力
由于制造误差和材料不均匀等因素,使叶轮的质心不在叶轮的圆心上,有一个偏移量e(e=OP,方向从O到P)。就使得叶轮运转时产生一个离心力,也叫偏心干扰力(见图1)。如果离心风机的振动过大,电机电流过大,温升过高,严重时电机线圈过烧。假设叶轮转子的质量为m,角速度为ω,则偏心干扰力F=meω。而ω=nπ/30。
例m=5 000㎏
e=0.02mm=0.02×10-3 m
n=980r/min
则F=5 000×0.02×10-3×[(980×π)/30]2≈1 053.2N
干扰力F还是相当大的。
轮盘、轮盖的晃动干扰
轮盘、轮盖的端面跳动要控制在一定的要求内,目的就是要减小因晃动产生的干扰。轮盘、轮盖的晃动将会在轴向产生周期性的干扰力,通过空气的传动,机壳也会产生振动。
反馈气流的干扰力
风机的叶轮与集流器(进风口)之间有一定的间隙,该间隙的存在,就使一部分气流回流。这部分气流可以叫做反馈气流。然而,关于风力发电机系列特性的研究很少,对异构风机串联的研究很少。反馈气流的稳定与否,也将影响风机的振动。所以,安装时要求叶轮与进风口之间四周的间隙均匀,重叠量要保证,目的就是使反馈气流并稳定,以减小风机的振动。一般来说,反馈气流越小,风机***越高,反之风机***就低,
版权所有©2025 产品网