高温烘干风机-烘干风机-冠熙风机 用质量说话
作者:山东冠熙2020/10/16 3:35:40







烘干风机的声压级可以反映人耳对声强的响应。四个监测点的声压级可用风机内两种叶片计算,比较烘干风机四个监测点的声压级,可以看出叶轮的声压级在穿孔前后高,低位置在风机入口前1米,因为旋转噪声和涡流噪声都集中在叶轮的旋转区域。风扇转速2900r/min,基频48.3Hz。在原叶片的声压级谱中,中低频有三个高峰值频率,***烘干风机,分别对应于叶10片叶片的483Hz通过频率、第二叶14片叶片的676.7Hz通过频率和两片叶片的1159.7Hz通过频率。穿孔后,烘干风机叶片周围的流动得到改善,旋转噪声明显降低。两级叶轮中间位置气动噪声的1/3倍频程分析如图5所示。1/3倍频程是指将频率范围从20Hz到20kHz分为30个部分。倍频程的振幅越大,频率对总声压级的贡献越大。当风机采用原叶片时,烘干风机叶片的频率噪声和宽带噪声对声压值影响较大。采用多孔叶片后,风机的声压级在整个频率范围内随振幅的不同而降低,中、低频段噪声降低幅度大,宽带噪声成为风机的主要噪声源。


(1)在风机消声器出口处安装不锈钢防护网,同时加强消声器的加固,防止消声器脱落,烘干风机,损坏叶片。

(2)联轴器位置不好。对策:重新检查风机与电机的同心度。

(3)叶片漂移。由于必须保证滑块与调节环之间的间隙,否则会卡住,因此在风机运行过程中,叶片滑块不可避免地会与调节环产生摩擦和冲击,间隙会变大。如果不及时检查和更换,会造成严重的叶片漂移。如下图所示,滑块磨损严重,单边偏差为10 mm。此外,松动的夹紧螺栓也会导致刀片漂移。叶片漂移后,由于气流的扰动,会引起风机振动,并发出异常响声。对策:在每次计划检修中,必须检查滑块的更换情况,检查调整环是否严重磨损,检查烘干风机各叶片角度是否一致,夹紧夹紧螺栓,并在叶片轴承上加润滑脂。

(4)烘干风机衬套磨损。衬套安装在风机轮毂上,与液压缸主轴配合。间隙控制在0.10 mm以内。衬套磨损后间隙变大,导致液压缸主轴与转子中心不一致,并产生异常响声和振动。对策:在每一次计划检修中,高温烘干风机,都要检查和更换衬套。_轴承损坏。对策:必须检查1到2个大修周期才能更换轴承。汽包厂生产的动叶可调轴流风机的液压缸是故障率高的部件。故障类型主要有以下几种:1.液压缸小轴承损坏。液压缸小轴承损坏是液压缸常见的主要故障。故障现象是风机运行时叶片突然关闭。2009年1月9日2号机组负荷500MW时,炉膛负压突然波动,检查2A风机不工作,调整风机叶片开度,电机电流、风压不变,立即减负荷,增加2b风机叶片开度,调整锅炉正常运行。停机风扇2A修理处理,更换液压缸后正常。损坏的液压缸解体,发现滑阀组件小轴承严重损坏,滚珠、保持架解体。经分析,山东烘干风机,液压缸与轮毂中心的偏差,使轴承承受附加载荷,并使轴承在长期运行中受到磨损和疲劳损伤。


本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调烘干风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( 10°, 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。结果表明烘干风机模型使用经过优化后的损失和落后角模型能快速准确地预测出该动叶可调轴流风机在全工况下的气动性能。

在实际的烘干风机叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。

在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。



高温烘干风机-烘干风机-冠熙风机 用质量说话由山东冠熙环保设备有限公司提供。山东冠熙环保设备有限公司有实力,信誉好,在山东 潍坊 的风机、排风设备等行业积累了大批忠诚的客户。公司精益求精的工作态度和不断的完善创新理念将促进山东冠熙和您携手步入辉煌,共创美好未来!同时本公司还是从事离心风机,离心通风机,离心鼓风机的厂家,欢迎来电咨询。

商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网