离心鼓风机来电咨询,冠熙精研风机20年
作者:山东冠熙2020/9/30 0:02:59












目前离心鼓风机的湍流数值模拟方法有直接数值模拟法、雷诺时间平均法和大涡模拟法。每个湍流模型都有其各自的优缺点。对于直接数值模拟方法,其优点是可以在不引入经验模型假设的情况下模拟流场中各尺寸的湍流波动,因此被称为精准的湍流波动。精细计算离心鼓风机流体数值模拟方法的缺点是在直接数值计算中,网格尺寸要求很小,导致计算量的增加。它通常需要较大的内存和快速的CPU,因此在实际工程中很难应用。雷诺时间平均法是工程中常用的数值模拟方法。通过对样机计算结果与原始测量数据的比较,详细分析了SSTK-U湍流模型的精度,为离心风机数值计算选择湍流模型提供了良好的参考。离心鼓风机通过引入雷诺应力的封闭方程,可以求解时间平均雷诺方程。其优点是避免了直接数值模拟计算量过大的问题,但这些经验模型只适用于有限的环境。直接数值模拟(DNS)是瞬时湍流控制方程的直接解。DNS的较大优点是它不需要对湍流进行任何简化或近似。理论上,可以得到相对准确的结果。然而,直接离心鼓风机数值模拟所需的网格节点数量巨大,计算量大。目前,只有一些简单的流动机理可以研究,如室内空气流动、静水中的气泡上升、颗粒与筒体在流动过程中的碰撞磨损等。






离心鼓风机的叶轮进口直径和出口直径增大,叶片进口安装角增大,叶轮进口宽度、出口宽度和叶片出口安装角减小。为了保证叶轮通道的横截面积逐渐变化,叶片安装角aβ由1aβ逐渐变为2aβ。通过数值计算方法,观察离心风机蜗壳内部的流动情况,通过收缩蜗壳180°~360°之间的型线,改进后的离心风机出口静压,出口全压和风机效率都有所提高。因此,根据离心鼓风机叶片安装角随叶轮半径线性变化的规律,设计了风机叶片安装角。通过对第三章斜槽离心风机内部流动特性的分析,可以看出,具有复杂“多弧”叶片的原型叶片吸力面具有较强的涡度,导致风机内部流动损失增大,无法提高风机的整体效率。


为了避免样机叶片结构复杂,提高风机效率,提高风机叶片的加工工艺,采用“双圆弧”拼接的方法进行叶片成型。离心风机蜗壳成形及参数选择离心风机蜗壳是将离开叶轮的气体引至蜗壳出口,将部分气体动能转化为静压的装置。离心鼓风机采用多耦合仿生设计和数值计算方法,研究了仿生叶片的降噪机理。下面介绍了离心风机蜗壳主要几何参数和参数的选择方法。蜗壳的主要几何参数包括蜗壳横截面积的周向变化、横截面积的形状、横截面积的径向位置、蜗壳的入口位置和蜗壳舌的结构。离心鼓风机根据不同的截面形状,蜗壳可分为矩形截面、平行壁蜗壳、圆形截面蜗壳等。






离心鼓风机的矩形截面蜗壳成型时,蜗壳侧壁只需用钢板切断,在滚筒上滚动即可。加工制造方便。在风机比转速和叶片出口安装角选择完毕后,根据风机的统计数据绘制了离心鼓风机总压系数与叶片出口安装角(at2~beta_u)曲线的关系,并进行了计算。因此,选择离心风机常用的矩形截面蜗壳作为风机蜗壳截面的设计依据。介绍了蜗壳型线的设计方案。采用等循环法完成了蜗壳型线的设计,选择等边单元法进行了蜗壳型线的近似绘制。

离心鼓风机蜗壳外形参数的选择

蜗壳宽度的选择和蜗壳较佳宽度的选择并没有给出一种固定的计算方法。建议蜗壳B的宽度为叶轮出口宽度的2-5倍[52-54]。蜗壳的宽度也可通过公式确定。近年来,随着人工智能算法的发展,数据驱动建模方法逐渐应用于风机性能预测。由式计算的蜗壳宽度为0.069m~0.099m,b值为0.72m,为风机叶轮出口宽度的6倍。通过对设计风机的建模和数值计算,当壳体厚度为叶轮出口宽度的6倍时,效率低,流量大,总压低。因此,根据离心鼓风机的数值计算和文献综述的结果,蜗壳宽度是叶轮出口宽度的4倍,即b为0.48m。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网