聊城离心排风机常用解决方案
作者:山东冠熙2020/9/28 21:36:59











工业生产中的离心排风机特别是离心式风机应用很广泛,在一些生产装置中甚至属关键设备。风机的安全、可靠运行是实现稳定生产的重要保证。但由于种种原因,造成风机超过允许范围的振动的现象并不少见,严重的剧烈振动会造成风机本体及其关联设备***的设备事故,甚至还会造***身安全事故。因此,必须高度重视风机的维护检查工作。本文对吸声蜗壳对风机降噪效果进行了研究,分别对单独蜗板、后盖板、蜗板与后盖板、蜗板与前盖板加装消声材料的4种方式进行了试验测量,在离心排风机全工况范围内,风机噪声都有不同程度的降低,其中蜗板加后盖板组合的降噪效果好。企业的离心排风机技术人员及其操作人员和维修人员在工作中必须对风机的运行状况进行监测、巡查,及时发现故障隐患并及时排除,防患于未然。本文研究的目的在于针对工业生产中常用的离心式风机运行中易于发生的振动现象进行研究和可采取的处理措施,应该能对生产一线中从事此类设备管理和维修的人员提供借鉴意义。



离心排风机绝大多是由电动机驱动工作的主要由叶轮、蜗壳、轴和轴承座及一些控制附件组成,属动设备。动设备完全不振动是不可能的,只是振动的允许范围不同而已。一般来讲,大型高速风机轴承采用轴瓦,润滑采用润滑油强制喷射润滑,高速旋转的主轴悬浮于油膜上,正常工况时振动很低。中小型的中低速风机轴承采用滚动轴承,常采用润滑脂润滑或润滑油浸泡飞溅润滑,正常工况时振动稍大。(2)在振动比较明显的管段上加装管道减震器,使管道与风机壳体呈柔性连接,减小或缓冲振动。振动无论大小,只要符合相关技术要求即可,但是异常的、超标的振动必须及时处理,否则振动会恶化,后造成事故和经济损失。




离心排风机管道共振和检查处理措施

风机的进出口管段风速很高,高速穿行的风会扰动管道,使管道发生共振。一般情况下,风机进出口管是靠法兰和叶轮壳体刚性连接的,管道的振动必然传到壳体上,而壳体通常和轴承座相连,壳体振动又引起轴承座振动,终导致致整台风机发生振动。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了离心排风机工作的范围,影响了金属叶轮的平稳运行。此类振动的预防处理措施为:

(1)检查离心排风机壳体,如壳体存在裂纹的或磨损及其腐蚀严重的,应加固或整体更换;

(2)在振动比较明显的管段上加装管道减震器,使管道与风机壳体呈柔性连接,减小或缓冲振动。常用的管道减震器,如KTX 可曲绕橡胶接头,即管道减震器,一般安装于靠近风机出口端,减震效果比较明显。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机,出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0。另外,有些管道补偿器如填料式补偿器、波形补偿器也可以起到减震作用;



(3)在条件允许下可优化出口管道,一般来说,弯头处更容易发生扰动管道而造成振动的现象,所以风机出口段宜有不小于5 m 的直段,以减少出口阻力损失,达到顺畅输送介质的目的;

(4)进口调节阀宜优先选用叶片阀,它在工作时能实现管道内输送介质的均匀分布,防止产生剧烈涡流而发生振动。上文阐述的引起风机振动的因素只是本人原所在企业常见的,当然不排除其他类型的风机会有其他的因素。在实际工作中,不能孤立、片面地把振动的原因归结于某一项因素,也有可能是这四种因素共同作用的结果。整机压力云图分布通过Fluent软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。因此,在分析离心排风机振动故障时,应该根据振动特征具体分析,事实求是地综合考虑,只有这样,才能准确、快捷地找出振动原因,消除振动故障。





整机压力云图分布

通过Fluent 软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。加米字集流器风机进口静压明显高于普通集流器离心风机, 其较大静压达到2 510 Pa,普通集流器达到1 440 Pa;加米字风机的全压较大可达5 860 Pa,而普通集流器较大达到4 260 Pa。由于蜗壳壁面是离心风机主要的气动噪声源,蜗壳不消声时,声波在风机蜗壳内连续反射,形成一个混响声场,声压级较高。



离心排风机集流器的压力用Tecplot 软件对模拟结果进行后处理,可以对离心风机集流器的受压进行对比分析。加米字形集流器和普通圆弧形集流器内部流场受压分布所示, 离心排风机米字形集流器入口压力为-8 000 Pa,到集流器出口达到-18 000 Pa,压差10 000 Pa;普通圆弧形集流器入口压力为-8 000 Pa,到集流器出口达到-16 000 Pa,压差8 000 Pa,小于米字形集流器。同时也可以看出,加米字形集流器压力梯度变化趋势比普通圆弧形集流器平缓,对稳定进口气流,保证气流的均匀及稳定有更明显的作用。各种加装吸声结构组合,风机蜗壳内部的通流结构尺寸和原风机一致。





原离心排风机和A 型改进风机在点的噪声频谱图。根据风机参数,风机旋转噪声基频为760 Hz,由频谱图可看出在500 ~ 800

Hz 之间的低频噪声并没有降低,而1 250-2 000 Hz 之间吸声材料的降噪效果非常好,噪声下降明显。主要原因就是选用的吸声材料超细玻璃棉在高频率下,吸声系数较大,因此多孔吸声材料其吸声效果是高频优于低频的。消声蜗壳为B 组合形式时与原风机的出口A声级随流量变化的对比图。对风机进出口安装条件有限制并且对噪声有一定要求的离心风机,吸声蜗壳是较好的选择。与原风机相比,在额定工况点A 声级降低约7 dB( A) ,在大流量工况,A 声级降低约5.0dB( A) ,在小流量工况下,A 声级降低约2.4 dB( A) 。



在125~ 500Hz 频段之间,风机A 声级有所增大,原因是后盖板加上消声材料后,叶轮轴向安装长度加长引起低频电机振动,噪声增加。在中高频段后盖板加消声材料的降噪效果很好,这种方式对于气动噪声及高频振动等起到很好的吸收作用,尤其是离心排风机包括电机的高频振动噪声过滤程度明显。消声蜗壳为C 组合形式时与原风机的出口A声级随流量变化的对比图。与原风机相比,在额定工况点总A 声级降低约7.2 dB( A) ,在大流量工况,A 声级降低约5.5 dB( A) ,在小流量工况,A 声级降低约3.5 dB( A) 。是消声蜗壳为D 组合形式时与原风机的出口A声级随流量变化的对比图。与原风机相比,在额定工况点,A 声级降低约5.14 dB( A) ,离心排风机在大流量工况,总A 声级降低约5.0 dB( A) ,在小流量工况,A 声级降低约2.0 dB( A) 。降噪效果稍微好于A 型改进风机,但不明显。可见前盖板加装消声材料降噪效果并不好,主要原因由于进口处有集流器,导致安装消声材料的面积相对于后盖板小很多,吸声效果不明显。本文研究的目的在于针对工业生产中常用的离心式风机运行中易于发生的振动现象进行研究和可采取的处理措施,应该能对生产一线中从事此类设备管理和维修的人员提供借鉴意义。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网