烘干房排湿风机质量材质上乘
作者:山东冠熙2020/9/13 4:26:54












为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台烘干房排湿风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲对叶栅流动、级匹配和级性能的影响,给出了高负荷轴流风机三维叶片设计的基本原则。同时,开发了S1流面协同优化方法,取得了较好的效果。降低了定子损耗,增大了风机裕度。高压风机的设计通常采用离心风机,但离心风机存在迎风面积大、流量小、效率低等缺点。针对大流量、高压力比、率的设计要求,如何完成单级轴流设计成为研究的***。长期以来,轴流风机的设计方法得到了发展。从孤立叶型法、叶栅法、降功率法到目前广泛采用的准三维、全三维气动设计方法,甚至到S1流面叶型优化[6]、三维叶型优化、烘干房排湿风机三维叶型技术,已经有了大量的研究工作。烘干房排湿风机带肩端间隙涡轮的研究表明,压力侧和吸入侧后缘槽都可以略微增大叶片顶面传热系数,但吸入侧后缘槽可以减小间隙的泄漏损失。用于提高设计方法的准确性和快速性。以率、高负荷为设计目标,通过合理选择总体参数,优化了烘干房排湿风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。






以烘干房排湿风机带后导叶的可调轴流风机模型为研究对象,如图1所示。风扇由集热器、活动叶片、后导叶和扩散器组成。风机转子叶片采用翼型结构,动叶14片,导叶15片,叶轮直径d为1500mm,烘干房排湿风机叶顶间隙delta为4.5mm,风机工作转速为1200r/min,轮毂比为0.6,设计工况安装角为32度,相应设计流量和总压为37.14m3_S-1和2348pa,结构简图给出了叶顶间隙均匀和不均匀的方程,其中前缘间隙和后缘间隙分别为1和2。leand te表示叶片的前缘和后缘。为了保证前缘与后缘的平均间隙为4.5mm,选取六种非均匀间隙进行分析。现代轴流风机的相对径向间隙为0.8%~1.5%[18],改变后风机叶尖间隙的较小相对径向间隙为1%,满足正常运行的要求,如表1所示。其中方案1~3为渐变收缩型,方案4~6为渐变膨胀型。控制方程包括三维稳态雷诺时均N-S方程和可实现的K-E湍流模型。可实现的K-E模型可以有效地解决旋转运动、边界层流动分离、强逆压梯度、二次流和回流等问题。为了保证精度和网格***性,对原风机在216万、245万、286万和337万网格条件下的性能进行了模拟。烘干房排湿风机采用分离隐式方法计算,壁面采用防滑边界条件,压力-速度耦合采用简单算法。采用二阶逆风法离散了与空间有关的对流项、扩散项和湍流粘性系数,忽略了重力和壁面粗糙度的影响。




当烘干房排湿风机叶顶间隙形状发生变化时,不可避免地会引起叶顶及其附近的吸力面和压力面流场的分布。由于叶尖间隙的存在,泄漏流将与通道内的主流混合,在吸入面顶角形成泄漏旋涡。烘干房排湿风机与方案3相比,方案2具有几乎相同的区范围,但叶尖间隙较大,有利于防止动静部件之间的摩擦,而方案6具有明显的性能退化,易于分析其损耗机理。为此,分析了三种叶尖间隙:均匀间隙、方案2和方案6。旋涡是描述旋涡运动的重要特征量,其大小可以反映旋涡的强度。在间隙均匀的情况下,涡量分布从叶片前缘到后缘呈下降趋势,流入量能有效地粘附在吸力面上,因此烘干房排湿风机涡量相对较小。由于主流与泄漏流的相互作用,叶片顶端的涡度比吸力面大得多,较大涡度出现在吸力面拐角处和叶片顶端附近。中间叶片顶部涡度强度明显增大,这是由于间隙收缩导致叶片前缘泄漏面积增大,导致泄漏流量增大,主流与泄漏流量的混合程度增大,涡度强度增大。根据以往对烘干房排湿风机亚音速定子叶片的研究,前缘弯曲用于匹配迎角[20],根部弯曲高度为20%,端部弯曲角度为20,顶部弯曲高度为30%,端部弯曲角度为40,如图18左侧所示。烘干房排湿风机叶尖间隙的大小沿流动方向减小,即叶片叶尖越靠近壳体,泄漏旋涡越靠近叶片上部和中部。***减少。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网