多翼式离心风机蜗壳优化设计方法的研究进展横截面面积的圆周变化、横截面形状、横截面的径向位置、蜗壳入口位置、蜗舌的结构是蜗壳的五个主要几何参数。其中蜗舌的位置、角度和形状,在避免内部冲击、减少分离损失和降低噪声等方面起着重要的作用。蜗壳的各几何参数对风机内部流动的影响并不是***的,它们之间既相互关联,又相互影响,因此,在确定这些几何参数时要进行考虑。采用数值计算与响应面法相结合的手段对蜗壳的三个主要几何参数(蜗壳出口的扩张角、叶轮的露出长度、蜗舌间隙)进行了优化,结果表明通过优化蜗舌间隙和叶轮的露出长度,不仅可以提高风机的效率,还可以降低风机的A声级噪声。本文主要完成设计多翼式离心风机的稳态和瞬态数值计算,在瞬态数值计算结果稳定后,采用FW-H模型计算设计风机的气动噪声值。按一维设计理论(等环量法)蜗壳型线应为一条对数螺旋线。通过对方程的简化处理,多翼式离心风机按照等边基元法和不等边基元法可以快速完成蜗壳型线的绘制。多翼式离心风机采用改进的等边基元法绘制离心风机的蜗壳型线,通过数值计算与实验研究,结果表明采用改进的等边基元法绘制蜗壳型线,不仅可以提高离心风机的效率,还可以降低风机的噪声。在蜗壳型线一维设计理论的基础上,通过考虑气体粘性因素的影响,对风机原外壳进行了改进。研究结果表明,通过考虑气体粘性,对蜗壳型线进行改进,可以减小蜗壳内的流动损失,提高风机的效率。
本文采用N-S方程和SSTK-U湍流模型计算了多翼式离心风机在不同工况下的稳态,并根据公式计算了设计工况下离心风机的压力、轴功率和效率。在得到风机性能参数的数值结果后,将不同工况下数值结果的误差值与样机原始测量结果进行了比较。在完成多翼式离心风机三维模型的建立、计算域的离散化(网格化)和边界条件的定义后,将多翼式离心风机原型的不同工况进行了数值计算,并将其浇注到ANSYS Fluent。在对多翼式离心风机电机基础和电机进行技术改造的基础上,通过改变引风机的叶轮形式和直径,增加引风机的输出,并根据原风机的输出,将引风机的容量提高1500帕。风机数值计算和测量的效率特性曲线表明,斜槽离心风机的设计流量为0.17kg/s,在设计工况下,风机的计算效率为48.1%。斜槽离心风机偏离设计工况时,小流量工况下效率急剧下降,大流量工况下效率变化缓慢,但效率仅为47%。斜槽离心风机的压力特性曲线表明,离心风机的总压力没有单调变化,但随着风机流量的增加,斜槽离心风机的总压力减小。非单调压力特性曲线表明,离心风机阻力变化较大时,风机风量变化较大,风机稳定工作面积较小。
多翼式离心风机不同工况下叶道内部的流线图,能够看出风机在0.8dQ流量工况下,长叶片的吸力面存在较大的别离区,而且在短叶片的吸力面构成两个旋涡区,其中叶片出口处的旋涡由于相邻叶道的叶片压力面的高压区向叶片吸力面回流而构成;叶片吸力面内部旋涡由于自身叶道的压力面向吸力面回流而构成较大的旋涡。斜槽风机的长叶片吸力面的别离区开始向叶道出口处偏移,别离区有所减小,但短叶片的吸力面仍然存在两个旋涡,但旋涡也有所削弱,因此风机在1.2dQ时功率也有所进步,但在大流量工况下功率依然只有较低的47%。结果表明,多翼式离心风机基于LSSVM和LHS的大型离心风机性能预测方法能够充分利用现有的风机数据信息,快速、准确地预测风机性能。
多翼式离心风机改善计划及成果分析在完成斜槽式离心风机内部流场分析后,根据风机的内部活动状况和合作单位提出的功能指标(压力在5000Pa以上,而且尽量进步风机的功率),对风机提出针对性的改善计划,来改善风机的内部活动状况,从而进步风机的整体功能。与样机的内部流程相比,该流程有了很大的改进,效率也有了很大的提高。首先由多翼式离心风机的活动特性分析中能够知道,多翼式离心风机的短叶片吸力面存在两个旋涡区,为了改善涡流带来的活动损失,提出了通过改变短叶片的长度来改善风机活动的计划。改善计划一在保证斜槽风机外壳不变的状况下,将风机叶轮中的短叶片向内延伸,
通过对多翼式离心风机不同方案的改进,得出如下结论:向内延长斜槽风机叶轮的短叶片,可以有效地减小风机所需的扭矩,提高风机在设计条件下的效率;延长斜槽风机叶轮的长叶片和短叶片,可以提高风机的效率。外扩可以明显提高风机的总压,但随着总压的增大,风机所需的扭矩也随之增大。因此,风扇的效率几乎不变。***后介绍了离心风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。减小斜槽离心风机样机蜗壳与叶轮的间隙,不仅可以提高风机的总压,而且可以降低风机所需的扭矩,提率2.1%。通过对多翼式离心风机样机内部流动的分析,提出了三种不同的改进方案,每种方案都提高了风机的一定性能参数。
风机短叶片向内加长,提高风机效率;风机旋转直径增大,风机总压增大;蜗壳舌与风机叶轮间隙适当减小,风机总压和效率提高。证实了。但多翼式离心风机仍采用复杂的曲面叶片结构,这不会改善风机加工工艺的复杂故障,每一个改进方案都不能改善风机叶片通道内的流动特性,使风机的总压力值达到5000pa以上,且冲击力较大。提高风扇的效率。(2)通过观察风机不同截面上的总压和速度等值线,可以得出离心风机的内部流动规律:由于叶轮的旋转,在叶轮入口产生较大的负压值,使空气从集尘器进入叶轮。如果只重新设计风机的叶轮结构,必然会导致叶轮与风机蜗壳结构不匹配,导致风机性能急剧下降。因此,本文采用现代风机设计理论,以全压5000pa、转速2900rmp、多翼式离心风机的风量1300hm/3为设计目标,对风机进行了重新设计,以满足合作公司的性能要求,提高风机的整体性能。在设计中,主要介绍了风机叶轮、蜗壳和集热器结构参数的选择方法,介绍了叶片结构的选择。
版权所有©2025 产品网