离心鼓风机的创新点和难点在于以、高压、节能为风机的设计目标,要求产品性能达到或接近高压、技术水平的***水平。但风机的性能参数是互补的、矛盾的。工作压力的增加也会导致电耗和噪声水平的提高,这是风机常见的技术问题。如何使风机的工作参数满足设计要求,提高风机的整体性能,不仅关系到单个零件结构设计的优化,而且关系到材料、制造、加工工艺和装配精度的优化。***后介绍了离心风机的瞬态计算方法,分析了瞬态计算中时间步长的选择原则。因此,这是一个对风机进行整体优化的系统工程,是离心鼓风机较大的技术难点。
另外,离心鼓风机的创新点如下:
(1)通过对斜槽离心风机样机的数值计算和内部流动特性分析,对样机结构进行了改进,并提出了各种改进方案。通过延长斜槽风机的短叶片,降低了风机所需的扭矩,提高了风机的效率;通过向外延伸风机的长叶片和短叶片,提高了风机的效率。大型风机叶轮的旋转半径可以增加风机的总压力,但效率基本不变。减小样机叶轮与蜗壳舌之间的间隙,不仅可以提高风机的总压,而且可以提高风机效率2.1%。(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。为XQ斜槽风机的进一步改进和完善提供了良好的参考。
(2)取消原离心鼓风机的设计结构。根据叶轮流道横截面积逐渐变化的原理,建立了风机叶片型线成形的数学模型,并根据该数学模型完成了风机叶片型线的设计。叶片的“双圆弧”设计被原来复杂的“多圆弧”设计思想所取代,从而改善了原模型低压低效的缺点。
(3)放弃传统的以实验为基础的风机设计方法,以数值计算方法为主要研究手段,改进离心鼓风机的设计,降低风机的开发成本和周期,加快离心风机产品的更新换代。
离心鼓风机叶轮由若干结构参数组成,这些参数对离心风机的性能有着重要的影响。相似原理在风机上的应用,极大地促进了风机的设计和改进。在风机设计中,根据相似原理,可以选择现有的风机或经过试验的机型进行相似设计,以保证风机达到预期效果。在没有合适、的风机或模型的情况下,可以根据离心鼓风机相似原理制作模型,然后将模型试验的结果转换为机器的实际结果,完成风机的设计。然而,相似原理的应用必须严格满足几何相似、运动相似和动态相似等相似条件。可以看出,在相同的条件下,通过风机转速与叶轮出口直径的比值,可以得到风机流量、静压、总压和内功率的比例关系。然而,当只改变叶轮结构参数时,改进后的风机与原型风机的相似性将不能得到满足。因此,本文通过改变离心鼓风机叶轮的结构参数和数值计算方法,对改进后的风机性能进行了评价和分析。离心风机结构参数试验模型为2900转/分斜槽离心风机,传动方式为A型传动。斜槽离心风机主要由叶轮、蜗壳和集热器组成。叶轮由前、后、叶片三部分组成。结合SSTK-U湍流模型,对斜槽风机的原型风机、改进风机和设计风机进行了流量计算。前盘为锥形弧。叶轮直径480mm,叶片数20片。短刃10片,长刃10片,分布均匀。短叶片为截短半径的前叶片,其余部分与长叶片结构相同,所有叶片出口安装角度为140度。叶轮图如图3.1所示。蜗壳为矩形截面,宽度为69mm。
为了减少离心鼓风机蜗舌与叶轮间隙过大造成的流量损失,第三种改进方案适当减小了蜗舌与叶轮间隙。但蜗壳舌与叶轮间隙过大,会增加风机的噪声值,降低风机的性能。在前向离心风机中,蜗壳舌与叶轮之间的间隙通常为叶轮旋转直径的0.07-0.15倍。原型离心鼓风机蜗壳舌与叶轮间隙为叶轮旋转直径的0.11倍。在第三种方案中,蜗壳舌和叶轮之间的间隙分别减小到叶轮旋转直径的0.07倍和0.09倍。当蜗壳舌部间隙为叶轮间隙的0.09倍时,效果较好。但是,由case1和case2和case3计算的值之间存在一些差异。可以看出,通过减小离心鼓风机蜗壳舌片间隙,蜗壳舌片附近的低压涡在设计流量条件下消失,同时蜗壳内部气体再次减少。在设计流量条件下,通过改变蜗舌与叶轮之间的间隙,可以有效地提高风机的总压,降低风机所需的扭矩,提高风机效率2.1%。
(1)本文详细介绍了离心鼓风机的数值计算过程,包括模型建立、网格化(预处理)、导入求解计算、后处理等。采用数值计算方法对斜槽风机的不同流动条件进行了计算。得到了由SSTK-U湍流模型计算的总压、效率和实验值的误差值。总压和效率的较大误差分别为4%和7%。然而,当只改变叶轮结构参数时,改进后的风机与原型风机的相似性将不能得到满足。验证了数值计算结果的准确性。
(2)通过观察风机不同截面上的总压和速度等值线,可以得出离心风机的内部流动规律:由于叶轮的旋转,在叶轮入口产生较大的负压值,使空气从集尘器进入叶轮。在叶轮中,由于叶轮的转动和叶片对气体的作用,叶轮内部沿径向由内向外移动,总压值逐渐增大。较大总压力位于叶轮出口外缘和叶片压力面。因此,本文通过改变离心鼓风机叶轮的结构参数和数值计算方法,对改进后的风机性能进行了评价和分析。由于叶片压力面速度较大,吸力面速度较小,形成了尾流结构。
具体离心鼓风机改造方案如下。
(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。测量了两台引风机在机组满负荷运行时的实际运行数据。(2)根据试验后实测数据,终确定引风机改造方案。在原风机电机不变的情况下,风机叶轮直径由2557 mm增加到2624 mm,叶片类型发生变化。工作人员进行了技术探讨,确定了离心鼓风机、脱硫增压风机的风量、风压及系统抗延长性能。随着风机叶轮直径的增大,壳体、叶轮、轮毂和集热器都被更换。同时,为了提高风机出口挡板的密封性,对风机出口挡板、进口挡板和执行机构进行更换,以提高风机的效率。
(3)引风机轴承冷却方式由工业水冷却改为带风机轴承冷却,降低了用水量。
离心鼓风机的性能保证:
(1)风量(Tb点工况,145c):134m3/s;
(2)全压升(Tb点工况,145c):7040pa;
(3)风机全压升效率(BMCR):86%,风机输入轴承。这两部分的温度监测大多采用遥控设备完成温度数据的传输和监测。当然,离心鼓风机温度传感器也是常用的设备,可以完成机组保护和温度监测。当温度超过要求时,继电器将发出警告。利用CFX商用软件对燃气轮机轮缘密封进行了稳态和瞬态数值研究。如果此时温度变化明显,继电器内部的液体装置也会发生剧烈变化,导致指针旋转。如果指针指示的值达到负载极限,将发出警报。
版权所有©2025 产品网