本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调高温轴流风机厂家的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( 10°, 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。在该项目应用中综合考虑现场情况,决定采用阻性消声器和消声弯头组合形成的一种结构形式,这种消声器结构简单,通过控制消声器内吸声材料的结构参数,可以有效的控制消声器的消声性能。结果表明高温轴流风机厂家模型使用经过优化后的损失和落后角模型能快速准确地预测出该动叶可调轴流风机在全工况下的气动性能。
在实际的高温轴流风机厂家叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。
在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。由于风机内部流动是复杂的三维黏性流,完全采用实验方法或三维商业软件求解其全工况下的性能费时费力且成本较高。
叶片是轴流风机的核心部件,在振动作用下容易发生破损或断裂,对叶片进行振动分析具有重要的工程意义。模态分析主要是分析结构的振动属性,叶片的固有特性包括频率和模态振型,与叶片的质量和刚度分布有关。
高温轴流风机厂家叶片在预应力下的前六阶振动频率。第二级动叶区的全压数值上基本是级的两倍且流体流动更加复杂,两者离心力惯性力相同,在同等条件下第二张动叶区更容易发生损坏,而级与第二级各阶的固有频率基本一致,所以离心力对固有频率起决定性作用,气动力对固有频率影响较小。(2)根据优化后的损失和落后角模型能够较为合理地得到转子和静子的损失随着叶片负荷的变化情况。叶轮各阶模态的临界转速为n = 60 f,可得到各阶模态的临界转速。
通常情况下,一阶临界转速下的振动较为激烈,叶片的一阶临界转速为16 860 r /min,而工作转速为1 490 r /min,远比一阶临界转速低,因此不会产生共振,满足风机的设计使用要求,同时方案三风机振动频率基本没有发生变化,也满足使用要求。导叶数目改变前后叶片振型基本没有发生变化,在叶片的前缘或者后缘点处现振动较大位移,叶根部位振动位移较小。 阶振型为叶片前缘点绕轴向的弯曲振动,第2 阶振型为叶片前、后缘点绕轴向的扭转振动,第3 阶振型为叶片后缘点绕轴向的扭转振动与一阶弯曲振动的复合运动,第4 阶振型为叶片后缘点绕轴向扭转与一阶弯曲振动的复合振动,第5 阶振型为扭转与一阶弯曲振动的复合振动,第6 阶振型为叶片后缘点绕轴向的二阶弯曲振动。从通风、冷却和保水通风的角度来看,小功率轴流风机通风的实际效果可以满足安全储粮和低温储粮的要求。可以看出,随模态阶数的依次增加,高温轴流风机厂家叶片各阶振型变得更加复杂,高温轴流风机厂家叶片的高阶次振型变为叶片复杂弯曲与绕轴扭转的复合振动。
在风机叶片断裂的正常运行过程中,轴流风机普遍受到离心力和动应力的影响。前者由于叶轮转动而产生离心现象,后者则导致叶片弯曲现象。通常情况下,轴流风机在运行过程中长期处于失速状态是造成风机叶片断裂的主要原因。由于轴流风机运行中存在旋转失速问题,此时转轮属于失速区,会导致高温轴流风机厂家叶片的背压和前压发生不同程度的变化,导致叶片原始受力情况发生变化。如果风机叶片断裂,将严重影响整个轴流风机在运行过程中的质量。信号分析系统的参数是在传感器、采集仪器和计算机准确连接后设置的。轴承温度高也是电厂轴流风机运行中的一个常见障碍。导致轴流风机轴承温度升高的主要原因有三个。个原因是润滑不良。
当轴流风机运行中使用的润滑油量小于规定值时,会导致轴承箱和原有内部润滑油之间的润滑油交换不足。高温轴流风机厂家在运行过程中会出现异常升温现象。第二个原因是冷却风扇的影响。造成这个问题的主要原因是引风机的烟温通常比较高。如果使用后不及时处理,轴承温度会异常升高。因此,使用后必须注意冷却整个机器,避免因冷却器内容物少而导致冷却不足的问题。轴承的供油和保证其润滑系统的动态特性引起轴承各种形式的振动,对于滑动轴承可能引起油膜涡动和油膜振荡等故障。第三个原因是轴承箱的影响。轴承箱在使用前通常需要根据社会要求进行组装。轴承箱内缸与轴承外套之间的间隙要求很高。由于二者之间的间隙过小,引风机轴承热膨胀后,容易对高温轴流风机厂家轴承的径向和轴向膨胀位移产生一定的影响,导致摩擦力增大,轴承温度异常升高。
高温轴流风机厂家轴承箱常见故障的分析与处理。
(1)轴承箱漏油、渗油:进油过多、回油不良、空气平衡管堵塞、骨架密封老化失效、油管接头密封不良、油温过高、油气渗透性过大等,都会引起轴承箱漏油或渗油。可以采取适当措施减少油量,清洁平衡管,更换骨架油封,更换油管和油封,降低机油温度。
(2)轴承中出现铜粉:a)中间轴热膨胀储备不足,轴向推力过大,出现铜粉,应正确调整中间轴预留膨胀量;对该引风机轴承振动烈度超标的振动现象如下:在高温轴流风机厂家轴承座和机壳振动烈度中,振动主要以多倍频成分为主,且基频份额占30%左右。b)酸性物质腐蚀轴承,应立即采取预防措施,并密封轴承。应更换RTS;c)如果油受到污染,必须清洁油系统并更换合格的油;如果油的含水量超过标准,油可以脱水或直接用过滤器更换。更换机油。
(3)高温轴流风机厂家轴承温度高:进油量过小、进油温度过高或轴承被污染后因摩擦和发热而损坏,可使轴承温度升高,适当调整油管或降低油箱的油温或更换损坏的轴承。
(4)轴承振动较大:振动的原因很多,如高温轴流风机厂家叶片损坏、转子不平衡、联接位置差、连接螺栓松动、基础刚度不足、叶片漂移、转子易损件磨损和轴承损坏等,都会引起轴承振动。在采取措施之前,必须找出正确的原因,然后采取具体措施。
版权所有©2025 产品网