本试验选用力锤激励,轴流风机采用三向加速度传感器采集信号,采用SCADAS多功能数据采集系统和数据处理软件LMSTESTLAB对采集到的信号进行分析和处理。SCADAS多功能数据采集系统由LMS公司生产。轴流风机具有和率。它可以采集速度、加速度、力、位移、声音、扭矩等信号。它是用于振动、声学和疲劳耐久性测试的***硬件。同时可以与lmstestlab无缝对接,将采集到的信号输入***处理软件进行后处理分析。
初步设计了轴流风机实验方案。在此基础上,建立了风机壳体的简化模型。采用锤击法进行锤击试验,获得频率响应信号。然后利用后处理函数识别模态参数,后得到模态参数。在LMSTESTLAB中,对风机壳体的三维模型进行了简化。通过建立多个试验点,尽可能反映壳体的形状,在壳体的进口、叶轮和出口处设置48个圆周试验点,选择靠近壳体中间位置的点作为锤击点。轴流风机采用固定锤击点和移动传感器进行测试。锤击壳体施加瞬时激励。传感器测量每个位置的响应。从各测点采集数据后,在polymax输入模块中选择已有的fr集,在稳态图中选择符号较多的列,即阻尼稳定的频率、频率和模矢量。风机外壳的前六阶振型频率如表1所示。风机额定转速为2900r/min,基频为48.3Hz,四次谐波频率为193.2Hz,类似于机壳的五阶振型。应优化风机的结构,耐高温高湿轴流风机,以避免运行时发生共振。
分析了轴流风机失速的原因。分析了引风机和一次风机的不同失速原因,并分别给出了相应的处理方法。本文总结了近年来轴流风机失速、喘振的情况及相关原因。指出除系统阻力过大外,风机本身的制造不符合标准,如动叶开度不一致或叶顶间隙过大,也可能是造成失速的常见原因。通过山东关西风机的实践和文献总结,
轴流风机失速的主要原因是:
(1)风机选型与烟气系统阻力不匹配,这一般是由于风压选择参数太小,风机阻力增大过大造成的。环境保护改造后的阻力、空气预热器堵塞或挡板门未全开等,风机实际运行点离失速线太近。
(2)风机在制造或安装上不符合标准,如叶顶间隙过大、动叶角度不一致等制造原因,导致实际失速线下移,使工作点过于靠近失速线。
(3)轴流风机进口管路布置不合理,导致引风机进口速度分布不均(总压畸变),耐腐蚀轴流风机,导致风机实际失速线向下移动,导致风机提前失速。通过以往的文献研究,发现在压缩机领域,叶尖间隙与失速裕度的关系得到了充分的研究。在电站风机领域,现有文献仅定性地讨论了叶尖间隙对失速的影响,没有建立叶尖间隙超调量与风机性能和失速压力之间的定量关系。结合风机大修叶片叶尖间隙数据,提出了一次风机叶尖间隙与风机性能和失速压力的定量关系。
在电厂运行过程中,轴流风机的使用非常普遍,轴流风机机组效率相对较高,能耗较低,因此得到了广泛的应用,但轴流风机往往会出现一些故障,如果处理不当,还会引起其他一些故障,甚至导致机组在运行中出现问题。整个发电厂。因此,本文对电厂轴流风机的常见故障及其处理策略进行了研究和分析。轴流风机的位置在其相关领域中是非常重要的,但是轴流风机的故障却经常发生,而轴流风机的故障是很难处理的。如果这些故障在故障发生后不能及时有效地解决,很可能导致锅炉灭火等更严重的问题。因此,研究火电厂轴流风机常见故障及其处理策略,高温轴流风机供应商,具有十分重要和紧迫的意义。轴流风机旋转失速通常是指迎角超过某一临界值时边界层分离的现象,当空气开始离开页面的凸面时,会诱发边界层分离的现象。随着攻角的增大,分离现象越来越严重,会产生较大的涡流现象,导致轴流风机风压下降。这是一个***的解释旋转失速。在轴流风机运行过程中,由于叶栅叶片加工安装过程中存在一定误差,安装角度不完全一致。同时,轴流风机,由于轴流风机安装角度不同,气流会失去均匀性。此时,每个叶片周围的流量存在一些差异,因此不可能在每个叶片上失速。喘振也是轴流风机运行中的一种特殊情况,它也与旋转失速有关。如果叶栅发生旋转失速,且与风机一起运行的管网系统容量很大,将导致整个风机管网系统出现周期性的气流振荡问题,即所谓的风机喘振。
版权所有©2025 产品网