山东离心式风机厂家生产基地「多图」
作者:山东冠熙2020/3/11 7:23:09









叶片形状优化对离心式风机厂家金属叶轮稳定运行的影响

叶片的结构优化对离心风机金属叶轮平稳运行有着重要的影响。目前很多学者研究了叶片出口安装角的结构优化以及叶片高度的结构优化,但是对于叶片形状的结构优化研究得较少。气流在叶片的不同区域的流动有很大的不同。(2)在振动比较明显的管段上加装管道减震器,使管道与风机壳体呈柔性连接,减小或缓冲振动。在叶轮前盘,气流的流动方式主要是轴向流动。在叶轮的中后盘,气流的流动方式主要是径向流动。通过这种方式,达到叶轮前盘向中后盘送风,使叶轮中后盘出风的目的。由此可见,通过对叶片形状进行优化设计,可以在一定程度上增加叶片的送风量以及有效通道的宽度,使得离心风机的效率得到提高,从而保证金属叶轮的平稳运行。



离心式风机厂家具有体积小、压力系数高等一系列优点,在工业、农业等各个领域都得到广泛应用,是人们生产生活中必不可少的一种机器设备。离心风机主要由集流器、蜗壳、电机以及叶片四个部件组成。2)加进气箱后,风机叶轮尾缘的“尾迹-射流”现象更加的严重,且在小流量区风机内部流场存在偏心现象。各部件的结构优化对离心风机金属叶轮稳定运行起着重要的作用。随着科学技术的发展以及生活水平的提高,对离心式风机厂家进行结构优化越来越受到人们的关注。因此本文通过对集流器优化、蜗壳优化、电机优化以及叶片形状进行优化,来观察结构优化之后的离心风机对金属叶轮稳定运行的影响,以促进离心风机的生产工作朝着更完善、更健康的方向发展。





离心式风机厂家进气箱出口处(叶轮进口处)水平横向截面速度的矢量图及云图,从图中可以看出,虽然其出口几何结构是对称的,然而在出口处其流速为不均匀分布,靠进气方向处流速较高,被进气方向速度较低,气流经弯头转弯后,流速分布比较紊乱,从而使得进入风机叶轮的流速不均匀,与文献的研究结果一致,这是导致离心风机效率低的原因之一。本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,主要通过各部件结构优化对离心风机金属叶轮稳定运行的作用作简要分析,以达到为保证金属风机的平稳运行提供理论支持的目的。



进气箱内的流动损失

进气箱的流动损失可以通过数值模拟计算分析,为理论研究提供参考,其大小为进气箱出口截面的动压乘以损失系数。由于进气箱出口速度大致与叶轮的进口速度一样。

进气箱对离心风机性能的影响可知在进气箱出口与离心式风机厂家叶轮进口处存在涡旋现象,研究中发现该涡旋与流量大小有关,在大流量区涡旋不明显,且位于进气箱侧的叶轮叶套的进口处,随着流量的减小,涡旋形状更加的明显,并向进气箱出口方向B侧偏移。可以看出,原始风机叶轮流道内靠近出口处形成涡旋,主要原因是叶片出口附近存在较为严重的边界层分离现象。消声蜗壳为A组合形式时与原风机的出口A声级随流量变化的对比图。离心式风机厂家叶片表面存在附面层,随着叶轮旋转,吸力面和压力面附面层的结构和形态是不同的。





为改善离心式风机厂家受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。另外,为真实反映风机内流场分布情况,在标准k-ε 计算模型的扩散项中加入粘性应力作用,使其高计算误差降低至3%。离心式风机是工业生产中应用广泛的通用辅助设备,而风机噪声尤其大型风机噪声很大,严重影响人的身心健康,所以降低风机噪声有着重要的意义。对比分析改型前后风机数值模拟计算和试验测量结果可知,采用修改的k-ε 模型进行计算发现改型后风机内旋涡强度减小,蜗壳出口靠近蜗舌处流动分离得到改善。试验结果表明:改型离心式风机厂家出口静压提升约25Pa,较大全压效率较原型机提升约10%。



同时,由于蜗壳张开度扩大能够***流动分离,使蜗舌附近区域的旋涡强度及其影响区域减小,从而有效地降低了多翼离心风机噪声2.5dB。多翼离心风机广泛应用于国民经济的各个领域,是工业生产中主要耗能设备之一,蜗壳作为离心风机中不可或缺的基本元件,其结构的不对称性及内部流动的复杂性会对叶轮出口气流角造成较大影响,使其沿圆周方向呈现出明显的不对称性。根据风机噪声频谱,穿孔板加玻璃棉吸声蜗壳的吸声性能中高频好于低频,风机基频噪声在设计点能够降低12.5dB(A)。而在风机实际运行过程中,离心式风机厂家叶轮出口气流与蜗壳壁面间存在强烈的非定常干涉,使得蜗壳壁面成为风机的主要噪声源。因此提高蜗壳型线设计水平,不仅能改善风机气动性能,还能达到降低噪声的效果。目前国内外学者对离心风机蜗壳型线的研究,主要集中在寻找能真实反映蜗壳内流体流动状态的设计方法。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网