离心引风机满意的选择
作者:山东冠熙2020/10/24 21:44:09














离心引风机高速流体和低速流体相互拉动,导致动能损失较大,再加上二次流的阻碍,叶轮的流动质量大大降低,这种结构非常不利于风机的运行。叶片切缝后,流道出口附近的速度梯度更加平衡,没有回流。这是因为通过槽道的流动可以将吸入面出口附近的流体吹走,这不仅避免了流出的现象,而且还将低速流体吸入吸入吸入面,改善了叶轮内部的流场。结果表明,当裂缝正好位于上边界层剥离的前端时,效果较佳。相比之下,离心引风机叶片入口(段)开口间隙的速度没有显著变化。叶片出口发生了巨大变化。在原风机电机不变的情况下,风机叶轮直径由2557mm增加到2624mm,叶片类型发生变化。叶片出口处的速度分布变得更加均匀,而原叶轮出口处的速度从吸入侧到压力侧变化很大,说明槽达到了预期的优化目的。

(1)通过数值模拟研究了开槽对风机性能的影响。结果表明,开槽有利于提高风机的性能,对风机的流场有很大的影响。

(2)开槽参数a/c=1.67,b/c=0.169时,风机性能相对较佳,风机总压提高4.25%,效率提高1.49%。

(3)离心引风机叶片切缝后,通过切缝的流体能有效防止叶片表面附面层脱落,减少流动损失,当切缝位置与附面层分离前沿对齐时,效果佳,使转轮出口流速更加均匀。

(4)本文所得到的较佳插削参数只能从有限的方案中选取,可能会错过较佳插削角度和位置,有待进一步研究。






离心引风机原型机的短叶片是在长叶片的基础上在直径为320mm的圆弧方位截断,改善计划一的短叶片长度进行了多种长度的挑选,并经过数值计算得到醉优的短叶片长度是在长叶片的基础上在直径为259mm的圆弧方位打断。改善完成后按照离心引风机原型机的数值计算方法,对改善后的风机进行数值计算,能够看出通过向内延伸斜槽式离心风机的短叶片,将风机的所需扭矩由4.53N.m降低为4.33N.m,使风机的功率进步了2.3%。能够看出在延伸短叶片后,改善计划一的风机短叶片吸力面的两个旋涡消失,叶片邻近的别离区显着的减小,但改善计划一的长叶片吸力面依然存在较大的别离区,因此风机的全体功率进步并不太显着。实际上,离心引风机相同部件的各类丢失中,甚至不同部件的丢失之间都是彼此相关,彼此影响的。


增大离心引风机叶轮的旋转直径改善计划一使斜槽式离心风机的功率进步2.3%,但风机的全压值根本坚持不变,这样的改善计划并不能满足对风机全压值5000Pa的要求。因此本文依据风机规划的相似原理,即在风机满足类似条件的情况下,风机的全压值与风机的转速的平方和全压的平方呈正比,依据风机的类似规划原理,在满足类似规划条件下,相应的增大风机叶轮的旋转直径,能够有用的进步风机的全压值。在数值计算过程中,采用SSTK-U湍流模型进行稳态数值计算,稳态结果作为瞬态计算的初始值。










稳态解常被用作瞬态分析解的初始值。离心引风机采用数值计算方法对锯齿后缘离心风机的气动噪声进行了数值研究。在数值计算过程中,采用SSTK-U湍流模型进行稳态数值计算,稳态结果作为瞬态计算的初始值。对风机的流场和噪声进行了计算、分析和研究。利用CFX商用软件对燃气轮机轮缘密封进行了稳态和瞬态数值研究。结果表明,离心引风机考虑静、动叶相互作用和静叶非定常尾迹等实际流动特性,用瞬态计算方法得到的静盘密封效率低于稳态计算得到的静盘密封效率。然而,瞬态计算结果更为准确。对液力变矩器的流场进行了瞬态计算,准确预测了液力变矩器内的实际流量。通过与实验数据的比较,发现误差很小,证明了瞬态计算方法对液力变矩器流场分析的正确性和有效性。离心引风机采用稳态和瞬态计算方法对离心风机进行了计算。在瞬态计算中,稳态计算结果作为瞬态计算的初始值。在瞬态计算结果稳定后,计算出设计风机的噪声值。在蜗壳型线一维设计理论的基础上,通过考虑气体粘性因素的影响,对风机原外壳进行了改进。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网