烘干机械设备由干燥室、集热器、风扇、计算机控制板和支架组成,热泵干燥系统由干燥室、压缩机、冷凝器、热膨胀阀、蒸发器、干燥过滤器、储液器等组成。热泵能够将除湿后的湿热空气供给干燥装置循环利用,除湿后还能够加热新空气。热泵干燥系统和太阳能收集系统可以联合或单独运行,如果需要扩大温度调节,它们通过空气连接。节电范围主要由辅助电加热装置实现。
烘干机械设备的工作模式如下:(1)当太阳辐射强度很高时,利用太阳能对菊花进行单独干燥,烘干机械设备等干燥系统的温度可以满足菊花干燥的要求。在压缩机中,低温低压饱和氟利昂被压缩成高压,高温蒸汽氟利昂进入冷凝器。在太阳能干燥菊花的实验中,我们可以看到,在晴朗的天气下,太阳能可以单独对菊花进行干燥。但是多雨的天气会受到严重影响,因此单靠太阳能干燥很难持续。如果一次干燥时间过长,会影响干菊花的质量,因此只有与其他干燥方法相结合(或增加辅助加热设备),才能满足生产的需要。热泵干燥设备不仅可以实现物料的***干燥,而且可以作为太阳能干燥设备的辅助干燥设备形式用于干燥。(2)热泵装置可在雨天和雨天及夜间单独运行。但是,在干燥室需要打开除湿蒸发器。当干燥室温度过高时,烘干机械设备需要通过调节风扇和风门来改变空气循环。当打开所有的风扇和风门时,这是一个开放的循环。当关闭所有风扇时,这是一个封闭循环。只有当打开风扇5时,它是半封闭循环。(3)当太阳辐射强度不足以使太阳能集热器出口温度达到干菊花温度时,可同时打开组合式太阳能热泵系统对菊花进行干燥。在干燥热泵系统时,烘干机械设备风扇和风门被打开。通过增加系统的热源,提高了系统的加热效率。
为了更好地了解烘干机械设备的性能,在装置建成后以菊花为原料。值得一提的是,在干燥箱上开有六个矩形观察口,可以满足操作人员随时观察箱体内部的需要,从而及时进行调整,确保产品的干燥质量。该装置进行了太阳能干燥实验、热泵干燥实验和太阳能热泵联合干燥实验。通过实验绘制了实验数据曲线,并对实验装置的能耗和干燥特性进行了研究,分别得到了实验结果。两个实验结果如下:,与菊花干燥相关的能耗;第二,通过比较分析,得出太阳能单独干燥和联合干燥的可行性的优缺点。
烘干机械设备的干燥试验步骤为:(1)在温室进风口、出风口、顶部和温室中部安装湿度和温度探头;(2)在地面以上1.5米处测量环境温度和湿度,使用数字式温湿度计将装置置于通风棚内;(3)固定。因此,通过实验,我们设计了一个太阳能热泵联合干燥菊花装置,它适合当地农村干燥农产品的需要,具有节能、***的作用。空气收集器旁的太阳能辐射计,烘干机械设备使空气收集器与辐射计底座平行;(4)将太阳辐射计固定在空气收集器旁边;将成品花放在干燥室的空气平衡板上,连接电源以运行干燥装置。实验数据记录如下:1。将花朵分拣出来后,称出初始重量,并在每次实验开始和结束时称出材料的重量,并记录烘干机械设备相关数据。2。将菊花放入干燥室后,打开干燥室内的相关设备,每小时左右记录一次干燥室内的环境湿度、环境温度、湿度和温度。(3)利用计算机记录装置上太阳辐射的相关数据。
首先,通过烘干机械设备对菊花进行干燥试验,得出菊花干燥过程基本没有预热过程,直接由减速干燥和恒速干燥组成。这样可以避免由于排出湿热空气而引起的热损失,还可以减少环境污染。菊花干燥的适宜温度范围为45~60℃,菊花含水量高,干燥时应保证充分的通风。影响干燥介质的风量、湿度和温度。菊花干燥的外部因素、菊花的大小和开放程度是影响菊花干燥的内在因素。烘干机械设备干燥是否完成主要取决于的干燥条件,而后装置获得的热量主要用于水分的蒸发,因此后装置的热效率较低。通过前期的菊花试验,得出烘干机械设备用于菊花干燥10kg/次所需的各部件的参数,并确定了集热器和干燥室的面积。
通过烘干机械设备组件配置和热泵系统组件的设计和选择,表明干燥室的尺寸和结构更合理,死角更小,干燥均匀,干燥效果更好。在节流和减压之后,高压液体制冷剂变成低压气液混合物,并进入下一个循环。其次,通过在干燥装置上对菊花进行干燥试验,得知太阳能热泵干燥装置干燥的菊花清洁无味,花形有所变化,但饮用效果不理想。受此影响,太阳能热泵联合干燥装置是可行的,利用烘干机械设备在晴朗的天气下对菊花胚进行为期一天的干燥,在技术上是可行的;通过实验得到的参数的计算,我们知道太阳能热泵联合干燥菊花装置具有该装置的***收益率为0.51左右,***回收率为0.51左右。我们将使用该装置来干燥其他农产品和农副食品。测试了器件的总体性能。如果能广泛使用,可以提高其利用率。烘干机械设备的干燥室平均温度为52℃。此外,我们还将考虑在电力辅助下提高空气温度。由于干燥过程比较复杂,因此在本实验的基础上对干燥过程进行研究,得出干燥室内空气速度、湿度和温度与干燥物料的醉佳比例。这将是我们今后工作的***。
版权所有©2024 产品网