(1)如果用于工业废气处理设备和管道的材料是易产生静电的塑料,并且在直角和三通处更容易产生静电,则应采取防静电措施。建议使用绝缘材料和防静电材料。在设计和安装管道时,应考虑一定的倾斜度,以利于液体积聚物的排出,避免液体积聚物的剩余混合物过多而造成二次。如果条件允许,管道应该定期清洗。所有车间的排气支管上应安装阻火器,以防发生事故时火势蔓延。废气处理管道应由不锈钢制成,以便更好地消除废气处理设备管道中的静电。(2)废气处理设备制造商应使用风机,并应注意正常维护,防止漏油和脱焊,防止金属摩擦产生高热和火花。(3)聚材料。由聚材料制成的喷淋塔可以尽可能使用潜水排污泵或离心泵。电机应尽可能远离塔架。如果潜水泵的泵体被***卡住,会导致电机发热。如果电路有问题,催化燃烧废气处理,如果开关不跳,将导致电机着火,从而导致聚喷雾塔着火。因此,废气处理工程公司,应消除电路老化和短路现象。
(4)紫外光氧催化适用于低浓度废气。火灾的主要原因是由于废气在管道中积聚,废气浓度很高。带电后电路电气问题产生的火花会引起火灾和。因此,在开启轻氧设备前,应提前10分钟开启鼓风机,并在管道废气浓度降低后开启轻氧设备,以防止火灾的发生。
(5)等离子体点火和主要是由电场短路产生的电火花、高压产生的电弧等引起的。引爆废气,因此等离子体适用于处理低浓度废气。此外,设备应每月抽出一次等离子设备的一级电极组件进行清洗,并视情况每三个月至六个月(期限为六个月)抽出一次等离子设备的所有电极进行清洗。
挥发性有机化合物污染是一个复杂的问题,涉及到广泛变化的污染物,威胁人类健康和环境。低温催化氧化具有***、经济的特点,VOCS废气处理,在研究和应用领域得到了广泛的研究。综述了再生催化氧化、光催化氧化和吸附浓缩/臭氧化混合处理的工程特点。研究表明,提高催化剂的低温活性,提高氧化剂的热回收效率,发展混合处理技术是控制VOCs污染的手段。
挥发性有机化合物(VOCs)从各种工业和自然资源排放到环境中,形成的污染是所有人共同关心的问题。控制挥发性有机物污染物的方法是在排放前将其清除。面对如此严峻的形势,近年来出台了越来越严格的规章制度,相应地需要更有效的VOCs去除技术。本文综述了近年来在实验室研究和工程应用中催化去除挥发性有机物的研究进展,以解决工业挥发性有机物污染控制的新趋势。
1催化应用
催化反应具有明显的低温活性、选择性和***性等优点,在工业污染控制中得到了广泛的应用。其中,RCO和PCO是VOCs污染控制市场上的2种主要催化技术。在此基础上,将吸附、臭氧氧化与之相结合的混合处理技术也逐渐成为一种新兴的技术。
催化混合处理
随着工业工艺的不断发展和优化,大部分VOCs污染源倾向于排放低浓度VOCs。在这种情况下,传统技术是不合理的,且每个工业污染源中存在多种VOCs。因此,所涉及的VOCs种类会相互竞争催化氧化;进而不完全氧化导致去除率低和副产物。[4]由于VOCs在物流中的多样性和复杂性,通过单一的技术将它们全部清除是不现实的。目前,催化与吸附浓缩、臭氧氧化等相结合的技术更为有效和合适。
1.3.1吸附浓缩催化氧化
吸附浓缩催化技术是一种良好的低浓度VOCs污染解决方案。通过连续吸附和解吸,得到较高浓度的VOCs,使后处理更节能。混合吸附浓缩催化技术具有吸附和氧化的优点,废气处理,且避免了饱和吸附剂的频繁处置和单一技术无法解决的高能耗。[5]
1.3.2 臭氧氧化催化
由于VOCS污染物在气体环境中稳定性差,单次臭氧化很难使其完全氧化为CO2和H2O。使用臭氧作为预处理可与普通催化技术产生协同效应。[5]在工程中,臭氧氧化过程中产生***副产物尤为令人关注,研究制备了钴锰复合氧化物催化剂,在室温下于O3去除甲醛,在微量O3浓度下达到80.2%的甲醛去除效率。[6]这种臭氧氧化与催化或光催化氧化结合的混合处理比单体处理更有效、更环保。
版权所有©2025 产品网