时刻与时间:时刻表示一天内某一个特指的时候,例如上午 8时 30 分开会,这里的“8 时 30 分”这是时刻。时间表示两个时期或两个时刻的间隔。例如,做作业用去 30 分钟,这里的“30 分钟”就是时间。
直线:没有端点,可以向两端无限延长。
射线:只有一个端点,可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。两点之间,线段。
垂线、垂足:两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线。
角:锐角(小于 90 的角)、直角(等于 90 的角)、钝角(大于 90 而小于 180 的角)、平角(等于 180 的角)、周角(等于 360的角)
平行线:在同一平面内的两条不相交的直线,叫做平行线。
面积:物体的表面或者平面图形的大小。
体积:物体所占空间的大小,初中数学小班课,叫做体积。
容积:一个容器所能容纳物体的体积,叫做容积或容量。
数学参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例9:一项工作,甲单独做要4天完成,初中数学,乙单独做要5天完成。两人合做要多少天完成?
其实,把总工作量看作“1”,初中数学补习班,这个“1”就是参数,初中数学培训,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算。
数学方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例8:一桶油,次用去40%,第二次比次多用10千克,还剩余6千克。这桶油重多少千克?
这题用方程解就比较容易。
版权所有©2025 产品网