为了研究、解决以上这些问题,后来发展起来了一门学科 EMC。若想更深入了解,读 者可以去研读一下郑军奇的《EMC 电磁兼容设计与测试案例分析》,有些例子相当经典。这 里顺便为读者扩展几个概念,希望读者能够了解。
(1)去耦。当器件高速开关时,把射频能量从高频器件的电源端泄放到电源分配网络。 去耦电容也为器件和元件提供一个局部的直流源,这对减小电流在板上传播浪涌尖峰很有 作用。
(2)旁路。把不必要的共模 RF 能量从元件或线缆中泄放掉。它的实质是产生一个交 流支路来把不需要的能量从易受影响的区域泄放掉。另外,它还提供滤波功能(带宽限制), 有时笼统地称为滤波。
(3)储能。当所用的信号脚在***1大容量负载下同时开关时,用来保持提供给器件恒定 的直流电压和电流。它还能阻止由于元件 di/dt 电流浪涌而引起的电源跌落。如果说去耦是 高频的范畴,那么储能可以理解为是低频范畴。
这里用E电动势作为电动势的符号,以区别于电场强度E。当所用的信号脚在***1大容量负载下同时开关时,用来保持提供给器件恒定的直流电压和电流。这个问题的提出和教材(包括一些大学教材)有关。教材常把用电源对电容器充放电过程表示为图6.9。这样表示有三个问题:1.只用电动势E电动势不能完全表示电源的特性,电源的特性必须用电动势E电动势和内阻r两个物理量描述,不存在内阻r= 0的电源。2.实际充电过程中电源内阻r可以起到限制充电电流的作用;但是如果电容器的电容较大、电源电动势较高,还需要在电路中串接限流电阻以防止充电电流过大损坏电源和电流表。3.如果电容器电容较大且充电电压较高,放电时也应增加限流电阻,以免损坏电流表。
下面就讨论电源给电容器充电的过程中能量的分配问题,设电源电动势和电容器电容量都不大,充电电路如图6.10和图6.11所示。当电容的内部温度达到电解液的沸点时,电解液开始沸腾,电容内部的压力升高,当压力超过泄爆口的承受极限就发生了爆浆。图6.10 和图6.11 是一样的,只是对电源的表示方法不同,图6.10 中把电源电动势和内阻分开表示,图6.11中把电源电动势和内阻合起来标注在电源下方,这样才是电源的正确表示方法。
在汽车音响电路中的实际效果是:
1、能够减小机头及功率放大器由于电源不良所带来的噪音。
2、在播放大动态的节目源时,减小由于突然电压降而带来的放大器非线性失真。
3、在优良的汽车音响系统中(对于低挡的汽车音响系统作用是不明显的),由于信号在电路中的损失更小了,可以使中音区部分表现饱满;高音部分声音通透性更好,1声音更更明亮;使其低音部分更充实而富有弹性。对汽车音响音质的提升具有不可替代的作用。
汽车电容器在南方称为“大水塘”,顾名思义其作用是“大水塘”中有充足的水源供应,保证机器更好地工作。
版权所有©2024 产品网