爆浆的种类:
分两类,输入电容爆浆和输出电容爆浆。
对于输入电容来说,就是在电源电路中体积较大、容易较大、额定电压高的电容器,PFN-C电容器厂家,对接收到的电流进行过滤。输入电容爆浆和电源输入电流及电容器本身的品质有关。过多的毛刺电压,峰值电压过高,电流不稳定等都使电容过于充放电过于频繁,长时间处于这类工作环境下的电容,内部温度升高很快。超过泄爆口的承受极限就会发生爆浆。
对于输出电容来说,对经电源模块调整后的电流进行滤波与储能。此处电流经过一次过滤,比较平稳,发生爆浆的可能性相对来说小了不少。但如果环境温度过高,电容同样容易发生爆浆。
电容爆浆的原因有很多,比如电流大于允许的稳波电流、使用电压超出工作电压、逆向电压、频繁的充放电等。但是***直接的原因就是高温。我们知道电容有一个重要的参数就是耐温值,指的就是电容内部电解液的沸点。当电容的内部温度达到电解液的沸点时,电解液开始沸腾,电容内部的压力升高,当压力超过泄爆口的承受极限就发生了爆浆。所以说温度是导致电容爆浆的直接原因。电容设计使用寿命大约为2万小时,受环境温度的影响也很大。电容的使用寿命随温度的增加而减小,实验证明环境温度每升高10℃,电容的寿命就会减半。主要原因就是温度加速化学反应而使介质随时间退化失效,这样电容寿命终结。为了保证电容的稳定性,电容在插板前要经过长时间的高温环境的测试。即使是在100℃,高品质的电容也可以工作几千个小时。同时,提到的电容的寿命是指电容在使用过程中,电容容量不会超过标准范围变化的10%。电容寿命指的是电容容量的问题,而不是设计寿命到达之后就发生爆浆。只是无法保证电容的设计的容量标准。所以,短时期内,正常使用的板卡电容就发生爆浆的情况,这就是电容品质问题。另外,不正常的使用情况也有可能发生电容爆浆的情况。
(2) 合理确定电容器的电容量及允许偏差。在低频的耦合及去耦电路中,一般对电容器的电容量要求不太严格,只要按计算值选取稍大一些的电容量便可以了。在定时电路、振荡回路及音调控制等电路中,对电容器的电容量要求较为严格,因此选取电容量的标称值应尽量与计算的电容值相一致或尽量接近,应尽量选精度高的电容器。在一些特殊的电路中,往往对电容器的电容量要求非常精1确,PFN-C电容器购买,此时应选用允许偏差在±0.1%~±0.5%范围内的高精度电容器。
电容器充放电现象
当***发生心室纤颤时,必须要用除颤器及时抢救才能挽救***的生命。除颤器工作时,一般是让100 J到300 J的电能,在约2 ms的时间内通过***的心脏部位。除颤器工作时的电功率在50 kW到150kW之间,这个功率是相当大的,用电池直接供电无法达到,也大大超过了一般家庭的用电功率,而除颤器还必须便于携带,那它使用了什么样的供电装置呢?
除颤器工作时的供电装置是一个C=70 μF的电容器。除颤器内带有电池,先通过电子线路把电池供电的电压升高到约U= 5 000 V,对电容器充电,充电后电容器储存的能量约为W= 12CU2=875 J。由于电容器电压很高,所以可以在很短的时间内释放一部分能量,通过电子线路控制放电的能量,就可以对***进行抢救了。除颤器的核心就是这个耐压5 000 V以上、70 μ F的电容器,它耐压较高、容量较大,并且体积较小、重量较轻,因此需要精心设计和制造。
电容器是常用的电子元件,而且不断应用在新的领域中。在现在推广的新能源汽车中,电动汽车占有重要地位。电动汽车多数用锂电池供电,PFN-C电容器厂,锂电池电动汽车的主要缺点就是充电时间长,使用不够方便。
所以还有另一种用电容器作为电源的电动汽车。电容器作为电源的优点是充电时间短,可以反复充电、长期使用,但缺点是一次充电后的行驶里程较短,因此目前还需要对高电压、大容量的电容器做进一步的研究。
关于电容器的充电,有人提出了一个很好的问题:“用电动势为E电动势的电源对电容器充电,济南PFN-C电容器,充电结束时电容器的电压U=E电动势。设整个充电过程中充电电量为Q,则电源电动势做功QE电动势,而电容器储存的电能为12QE电动势,电源电动势做功的另外一半能量去哪了?”
版权所有©2024 产品网