电容器两板间的电压正比于电容器所带的电荷量,设开始充电之前电容器不带电,图6.12中的斜线是电容器两板间的电压和电容器所带电荷量的关系曲线。充电结束时,电容器所带电荷量为Q,耦合电容器销售,电容器两板间的电压等于电源电动势U=E电动势。在斜直线下面的两个窄竖长方形的高度为在当前电容器带电q时电容器两板间的电压U,窄竖长方形的宽度为设想在电压U之下又充入的小电荷量Δq,窄竖长方形的面积为在充入小电荷量Δq的过程中电源对电容器做的功UΔq。如果把整个充电过程用很多个窄竖长方形表示,所有窄竖长方形面积之和即近似等于整个充电过程中电源对电容器做功之和。窄竖长方形的个数越多,耦合电容器哪家好,其面积之和就越接近斜直线下的三角形面积,所以可知在整个充电过程中电源对电容器做的功为斜直线下的三角形面积,即W= 1/2*QE电动势,此即为电容器储存的能量。在整个充电过程中电源电动势做功QE电动势,即图6.12中为以斜直线为对角线的矩形面积。电源电动势做功QE电动势与电容器储存的能量W=1/2*QE电动势之差为图6.12中斜直线上方的三角形面积。
旁路
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。
去藕
从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上 升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对 于正常情况来说实际上就是一种噪声,耦合电容器***,会影响前级的正常工作,这就是耦合作用。
储能
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150000 uF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10 KW的电源,通常采用体积较大的罐形螺旋端子电容器。
电容器是隔直流的,为什么电池(直流)可以为电容器充电?
在电路分析里,电路的响应有两种,一种是零输入响应,一种是零状态响应。
所谓零输入响应,指的是输入信号为零;所谓零状态响应,指的是电路中所有储能元件和各种电源的状态均为零。
在分析零状态响应时,要把电压源短路,电流源开路。
对于电容来说,在零状态响应的通电瞬间,它可以认为是电压为零的电压源,所以它相当于短路。
我们来看下图:上一张图是电路结构,明光耦合电容器,我们看到电源E和它的内阻r,开关QF,还有电容C和电阻R。
版权所有©2024 产品网