传动齿轮中震动大的根本原因
在润化优良的关闭式传动齿轮中,齿面普遍的无效方式是齿面疲惫点蚀,即疲惫损坏。传动齿轮支承后,齿面将造成接触应力,齿面接触应力脉动循环系统转变。运行中,轮齿在接触应力不断***下,在齿面(或表层下某一深层)出現细微疲惫裂痕,裂痕持续扩散拓展,从齿面剥落出来金属材料碎渣,产生斑点状小坑。同时,我国大汽车厂同国外著l名汽车大公司进行合作,引进国外***汽车生产技术,其中包括汽车齿轮的生产技术。齿面出現点蚀后,齿廓表面遭受毁坏,使震动和噪音增加,以至不可以一切正常工作中。
点蚀多出現在靠接节线周边的轮齿表面上,这由于轮齿在齿合全过程中,当轮齿在挨近节线处齿合时,相对性拖动速率方位有转变,浮油不容易产生。并且当轮齿在节线周边齿合时,另外齿合齿数少硫化橡胶射出去成形机,针对直传动齿轮通常只能一对齿触碰。因而,齿面接触应力也很大,故在节线周边容易产生点蚀。
硬齿面传动齿轮一般不易出現非可扩展性点蚀,当点蚀一旦出現就会拓展,而产生可扩展性点蚀。针对表面热处理及表面渗碳淬火的钢质传动齿轮,齿面疲惫裂痕经常***l先产生在热处理硬层与软芯部相接处,裂痕拓展后,齿面会一片剥落,与齿面点蚀外型不一样,剥落坑的总面积和深层都比点蚀大。这类齿面一片剥落的状况称之为剥落。
根据提升齿面强度、改进润滑脂特性、选用角变位传动系统方法、提升传动齿轮的触碰精密度等方式均可缓解和避免疲惫点蚀的产生。
失效形式1、齿面磨损对于开式齿轮传动或含有不清洁的润滑油的闭式齿轮传动,由于啮合齿面间的相对滑动,使一些较硬的磨粒进入了摩擦表面,从而使齿廓改变,侧隙加大,以至于齿轮过度减薄导致齿断。该钢晶粒细,渗碳时晶粒长大倾向小,具有良好的渗碳淬火性能,渗碳后可直接淬火。一般情况下,只有在润滑油中夹杂磨粒时,才会在运行中引起齿面磨粒磨损。2、齿面胶合对于高速重载的齿轮传动中,因齿面间的摩擦力较大,相对速度大,致使啮合区温度过高,一旦润滑条件不良,齿面间的油膜便会消失,使得两轮齿的金属表面直接接触,从而发生相互粘结。当两齿面继续相对运动时,较硬的齿面将较软的齿面上的部分材料沿滑动方向撕下而形成沟纹。
齿轮加工生产的形式
齿轮加工生产的形式齿轮生产的形式按照齿面按硬度可区分为硬齿面和软齿面两种:1)硬齿面:齿面硬度HB>350。这种齿轮生产的承载能力高,在齿轮精切之后进行淬火、表面淬火或渗碳淬火,一般齿面硬度HR***5~65。但在热处理中,齿轮生产时不可避免地产生变形,因此在热处理之后须进行磨削、研磨或精切,以消除因变形产生的误差,提高齿轮的精度。文献指出,在1980年以前,我国的渗碳合金结构钢(包括20CrbinTi钢)在钢材出厂时只保证钢材的化学成分和用样品测定的力学性能,但是在汽车生产时常常出现化学成分和力学齿轮l轴性能合格的钢材,由于淬透性能波动范围过大而影响产品质量的情况。如果硬齿面齿轮精度不够,其承载能力往往不如软齿面的。经渗氮处理的齿面硬度HV≥600,抗胶合能力较高。由于渗氮时温度较低,齿轮的变形很小,可不再进行机械加工,但渗氮层较薄,适于制造小尺寸的齿轮,但不能承受冲击载荷或磨料磨损。 齿条分为斜齿齿条和直齿齿条两种,分别和斜齿圆柱齿轮和直齿圆柱齿轮两种齿轮相互配合使用,齿条的齿廓为直线而不是渐开线,相当于一个无穷大的圆柱齿轮一样。齿条加工的方法有很多种,每一种都是根据材料以及对齿条精度的要求不一样才选择正确的加工方式。 齿条加工的方式主要是有两种,针对一些精度比较高的、硬度非常大的齿条进行加工,包括对材料进行热处理、加工齿形等,采用的是两次线切割齿形以及两次齿形热处理的方式。在这其中一次热处理是用来消除一下齿条材料的内应力,然后再进行一次线切割齿形,齿形留2mm的余量就行;二次采用热处理的方式使齿形的硬度能够达到使用的要求,再对齿条的两端进行堆焊铜层,在车线和消磨外圆之后,进行二次线切割齿形,达到齿条与外圆同轴的水平。 齿条经过这两次热处理和两次线切割齿形的循环交替进行,使得制成的齿条既克服热处理后材料容易出现淬透性的问题,还能够达到硬度的要求,又保证了齿形高精度的要求,同时又能够提高了齿形与外圆的同轴度。所以这种方法有很大的优势,就是在保证齿形整体的硬度能够达到要求的同时,使得齿形的精度又能够符合设计的要求,这样就大大提高了齿条的加工质量。
版权所有©2025 产品网