激光焊接可将入热量降到的需要量,热影响区金相变化范围小。不需使用电极,没有电极污染或受损的顾虑。且因不属于接触式焊接制程,机具的耗损及变形皆可降。激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。喷吹出的气体一方面与切割金属作用,发生氧化反应,放出大量的氧化热。其次,工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。激光束可聚焦的区域,可焊接小型且间隔相近的部件,可焊材质种类范围大,亦可相互接合各种异质材料。另外,易于以自动化进行高速焊接,亦可以数位或电脑控制。焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。
数控机床镶钢导轨的激光淬火技术应用
(1)预备热处理
导轨经锻造后,进行常规的正火及调质处理,以细化晶粒,改善***结构,降低内应力,并为后续激光淬火做好***准备。
(2)激光淬火设备及工艺参数
采用国产31.5kW二氧化碳激光器及激光加工机床,激光输出功率P=900W,光斑直径为4mm,离焦量d=240mm,扫描速度v=10m/s。
经上述工艺处理后的导轨,淬火区淬硬层深度为0.58mm,硬化带宽为4.47mm,硬化层***为细针状马氏体 部分残留奥氏体,表面硬度为724~797HV0.1,相当于61~64HRC。
(3)磨损试验
磨损试验结果表明,当激光扫描淬火花纹为45°斜线(与导轨棱边成45°斜线,(棱形)硬化面积为40%时,导轨耐磨性高。
自适应随形激光熔覆是解决上述难题一个行之有效的方法,主要包括以下三个基本步骤:
1. 采用传感器进行在线检测:传感器可以是接触式、机器视觉、激光位移等多种,而且必须要建立起传感器测量坐标系与机器人激光熔覆工具坐标系间的对应关系;
2. 自动数据处理:包括数据滤波、重构、建模等,一些应用还需要实现自动模型匹配、缺陷辨识等智能算法;
3. 自动路径生成和工艺参数配置:在自动数据处理所建立模型基础上,进行分层切片、生成填充轨迹,并根据缺陷类型,自动选择优化工艺参数。
版权所有©2025 产品网