为了消除或减少激光焊接的缺陷,更好地应用焊接方法,提出了一些用其它热源与激光进行复合焊接的工艺,主要有激光与电弧、激光与等离子弧、激光与感应热源复合焊接、双激光束焊接以及多光束激光焊接等。此外还提出了各种辅助工艺措施,如激光填丝焊(可细分为冷丝焊和热丝焊)、外加磁场辅助增强激光焊、保护气控制熔池深度激光焊、激光辅助搅拌摩擦焊等。(1)功率密度。 功率密度是激光加工中关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。(2)激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。进行激光熔凝处理的冶金行业各种材料的轧辊、导卫等工件,其表面粗糙度已经接近激光淬火的水平。(3)激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。(4)离焦量对焊接质量的影响
激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。进入20世纪80年代以来,激光熔覆技术得到了迅速的发展,已成为国内外激光表面改性研究的热点。激光熔敷技术具有很大的技术经济效益,广泛应用于机械制造与维修、汽车制造、纺织机械、航海与航天和石油化工等领域。从激光淬火齿面硬度、硬化层深度以及抗点蚀疲劳强度等性能指标看,激光淬火完全可以取代常规的齿轮渗碳工艺。
激光熔覆技术是—种涉及光、机、电、计算机、材料、物理、化学等多门学科的跨学科高新技术。它由上个世纪60年代提出,并于1976年诞生了论述高能激光熔覆的专利。进入80年代,激光熔覆技术得到了迅速的发展,结合CAD技术兴起的快速原型加工技术,为激光熔覆技术又添了新的活力。已成功开展了在不锈钢、模具钢、可锻铸铁、灰口铸铁、铜合金、钛合金、铝合金及特殊合金表面钴基、镍基、铁基等自熔合金粉末及陶瓷相的激光熔覆。控制断裂是利用激光刻槽时所产生的陡峭的温度分布,在脆性材料中产生局部热应力,使材料沿小槽断开。