注塑模具设计经验与思路分析:
第i一步:产品分析与修改,确定模具结构,缩水图:
1、产品分析:
开模方向,分模线与分模面,外形尺寸,厚度,拔模角度,倒勾及相应抽芯方式,进胶点与进胶方式,模穴数等等。
2、转工程图:
用三维软件出图,一般建立三个视图:第i一个主视图(后模表面投影),第二个第三个立体示意图(外表面和内表面)。其他视图按第三角法或第i一角法摆放,剖视图(X和Y,剖切位置线通过重要位置中心,倒勾,柱位,孔位,枕位等等),保存文件DXF格式,到CAD打开标数处理。模具温度是注塑成型中***要的变量----无论注塑何种塑料,必须保证形成模具表面基本的湿润。
3、缩水图:
将上一步工程图镜像一次并且放大一个缩水率的倍数。(标明:MI,缩水率)
第二步:产品排位:在模具内怎样排列
考虑因素:模具长宽方位,产品模穴数,进胶位置,间隔(强度,放什么零件放得下)
先排第i一个视图是后模侧俯视图抓主视图,第二个视图排前模。
模具成型分类
(1)***成型
是先把塑料加入到***机的加热料筒内,塑料受热熔融,在***机螺杆或柱塞的推动下,经喷嘴和模具浇注系统进入模具型腔,由于物理及化学作用而硬化定型成为注塑制品。***成型由具有***、保压(冷却)和塑件脱模过程所构成循环周期,因而***成型具有周期性的特点。热塑性塑料***成型的成型周期短、生产效率高,熔料对模 具的磨损小,能大批量地成型形状复杂、表面图案与标记清晰、尺寸精度高的塑件;但是对于壁厚变化大的塑件,难以避免成型缺陷。塑件各向异性也是质量问题之 一,应采用一切可能措施,尽量减小。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与高精密模具配件钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,高精密模具配件的变形极i小,因此高精密模具配件的表面强化是采用渗氮技术较早,也是应用***广泛的。
(2)压缩成型
俗称压制成型,是早成型塑件的方法之一。压缩成型是将塑料直接加入到具有一定温度的敞开的模具型腔内,然后闭合模具,在热与压力作用下塑料熔融变成流动状态。由于物理及化学作用,而使塑料硬化成为具有一定形状和尺寸的常温保持不变的塑件。压缩成型主要是用于成型热固性塑料,如酚醛模塑粉、脲醛与C3H6N6甲醛模塑粉、玻璃纤维增强酚醛塑料、环氧树脂、DAP树脂、有机硅树脂、聚酰亚i胺等的模塑料,还可以成型加工不饱和聚酯料团(DMC)、片状模塑料(***C)、预制整体模塑料(BMC)等。淬火工艺上也如此,并应严格控制加热时刻避免脱炭,资料挑选好之后就是热处理了,在出产了必定的数量后留意去应力,还有就是规划合理,尽量避免应力会集,留意R角的巨细控制。一般情况下,常常按压缩膜上、下模的配合结构,将压缩模分为溢料式、不溢料式、半溢料式三类。
(3)挤塑成型
是使处于粘流状态的塑料,在高温和一定的压力下,通过具有特定断面形状的口模,然后在较低的温度下,定型成为所需截面形状的连续型材的一种成型方法。挤塑成型的生产过程,是准备成型物料、挤出造型、冷却定型、牵引与切断、挤出品后处理(调质或热处理)。在挤塑成型过程中,注意调整好挤出机料筒各加热段和机头口模的温度、螺杆转数、牵引速度等工艺参数以便得到合格的挤塑型材。模具的冷却效果直接影响制品的质量和生产效率,如冷却不良,制品收缩大,或收缩不均匀而出现翘面变形等缺陷。特别要注意调整好聚合物熔体由 机头口模中挤出的速率。
保持恒定温度在微型模具制造过程中的重要性
微型模具制造过程中极高精度的要求,使得某些因素变得比它们在正常EDM环境下更为重要。特别是温度,它对于能否生产出可靠的零件起着至关重要的作用。即使是机床或生产环境所产生的微小温度变化,也足以影响机床的铸铁床身和所生产零件的精度,导致零件报废。实际上压射比压是压铸工艺中重要的一个参数,不仅仅影响铸件质量,对模具寿命同样影响巨大。
许多微型模具制造商为了解温度变化的问题,设计并建造了现代化的全气候控制工作区域。这是一个理想的解决方案,一个全气候控制室不会暴露于阳光之下,室内温度保持在±1 F范围内。
电火花机床设计的发展进步使得加工车间内的机床可以获得较高水平的热稳定性。现在已经开发了一种在微型模具生产中使用的机床双重热稳定性系统。这个系统可以监控电介质温度,然后通过电介质冷却空气,从而使机床保持恒定的温度。电介质本身也通过工作台循环运转,防止在电介质注入时发生热冲击现象。面板→A板→B板→方铁→导柱→顶针板→顶针固定板→底板分型面的基本形式有哪些。这种系统有助于微型模具制造商生产出更加可靠的产品。
版权所有©2025 产品网