氯化钠掺杂PEDOT:PSS实现高填充因子钙钛矿太阳能电池
近年来, 以CH3NH3PbI3为代表的有机-无机杂化钙钛矿太阳能电池因其突出的光电性能和高光电转换效率而受到研究者们越来越多的关注。其中PEDOT:PSS作为一种传统的空穴传输材料,其具有高透光率、良好的热稳定性以及和钙钛矿匹配的级,被广泛的应用于反式的平面钙钛矿太阳能电池结构中。但是,以往的研究很少关注PEDOT:PSS的表面属性对钙钛矿晶体生长和器件性能的影响。印刷方法,将PEDOT:PSS/AgNW材料从玻璃衬底上转移。
这一方法不仅改善了PEDOT:PSS本身的导电性,同时通过其表面分布的N***小晶体改善了上层钙钛矿薄膜的质量。通过这种简单的方式同时提高了填充因子(高达81.9%)和开路电压,使钙钛矿电池的性能从平均的15.1%提升到了17.1%,g达到18.2% 且基本没有出现迟滞现象。通过系统的分析对比阐明了电池性能提升的本质可归因于两方面: ① N***的掺杂导致了PEDOT和PSS的相分离,从而提高了电导率和空穴提取能力;② 基本一致的N***和MAPbCl3晶格参数(不匹配度低于lt;2%)和 (001)面匹配的氯原子排列使得PEDOT:PSS 表面分布的N***作为种子诱导形成了均匀的具有一定(001)取向的钙钛矿薄膜。该研究能很好的与印刷技术相兼容,从而实现和晶体取向可调的钙钛矿太阳能电池的量产。这一方法不仅改善了PEDOT:PSS本身的导电性,同时通过其表面分布的N***小晶体改善了上层钙钛矿薄膜的质量。
PEDOT以旋涂或者浇铸成膜得到的电导率可达550S/cm,用气相聚合法得到的聚合物更能达到1000S/cm。
PEDOT分散液的粘度实表征镀膜后稳定性的重要参数,粘度可在0.1-1000mPa?s(在20℃和100S-1的剪切速率下用流变仪测定),粘度j为40-150mPa?s.
实验证明,当PEDOT粒径明显降低时,其粘度和“挂壁”现象明显增大。国外文献和专利均表明,超高压均质是降低PEDOT粒径的金方法。通过超高压均质这样一个手段,能够改善样品性能从而使应用成为现实。
实验设备:ATS高压均质机,光散射粒度仪
样品:PDEOT:PSS分散液
含量:固含量3-5%PH值为1
实验目的:将产品粒径降低至100nm以下
评判标准:
1.样品充分分散后,应呈现类似“胶体”状流动状态,粘度增大
2.导电性能需达到产品需求
3.粒径分布均一,涂布成膜后均匀稳定
基本实验流程:
1.将冷水机温度设置为-5℃,待温度充分降低之后,可开始准备均质处理
2.低压800bar处理三遍取样,高压1000bar处理五遍取样,高压1500bar处理五遍取样
3.实验中应注意随着均质处理温度升高,如果冷水机温度不能满足实验要求,应暂停实验或更换冷水机和换热设备
实验现象:
1.随着均质压力和次数的增加,样品的颜色有一定程度的变浅
2.均质前的沉淀物,均质之后静置后样品状态稳定不沉淀
3.均质处理后,样品温度会略微升高,此时在试管中的流动状态仍为液体。静置后温度降低,“粘壁”现象会较为明显。
导电聚合物聚乙撑二氧***吩掺杂聚(磺酸盐)(PEDOT:PSS)具有优异的生物相容性、高导电率以及的耐水性等优点,被广泛用于太阳能电池、发光二极管、电化学晶体管、超级电容器以及生物***等领域。其中,在生物***领域其相较于无机半导体优异的柔性使其在构筑柔性生物电子器件方面起到难以替代的作用。但是,目前PEDOT:PSS在该领域的应用形态主要以膜形态为主,聚合物膜与生物物性方面的显著差异限制了其性能稳定性和器件寿命。近来,PEDOT:PSS导电凝胶体系的出现为解决这一问题带来了新的策略。但国内相关研究还比较落后,尤其是单体EDOT合成的研究,国内尚未见有这方面的报道。
近日,美国加州大学洛杉矶分校(UCLA)Ali Khademhosseini和Shiming Zhang等研究者利用PEDOT:PSS体系的室温凝胶化特性,借助表面活性剂的辅助,在室温条件下实现了具有可***性的新型导电PEDOT:PSS凝胶体系的大面积简便制备。基于简单的***成型等方法,可实现纤维状、曲面基底膜等多种PEDOT:PSS形态柔性器件的制备。三种薄膜制备方法各有优缺点,促进了PEDOT薄膜对电极的发展,也使得D***取得了巨大的进步。同时,该PEDOT:PSS凝胶体系展现出优异的自愈合性能,在开发有机生物电子器件方面具有广阔的应用前景。
版权所有©2024 产品网