晶体硅(单晶、多晶)太阳能电池的主体结构为晶体硅材料,前表面印刷了栅线状的银作为负电极;而背面除了 2 根银电极外,其余都是铝,我们称之为铝背场,由丝网印刷铝浆料,在 800 多度的高温下采用合金化工艺烧结成型。
其作用是:
一是与 P 型的晶体硅衬底形成 P 结,减少少子复合,提高少子扩散长度;
二是形成合金背场,对长波部分光线具有一定程度的反射作用,增加光电转换效率;
三是导电作用。
在使用金属卤化物灯( super UV )作为加速劣化光源的情况下,因为灯光中含有太阳光中所不包含的短波长光线,使得光伏组件中的紫外线吸收剂受损, 因此其劣化机理与实际环境中所引发生的劣化并不相同, 盐田在报告中 推荐使用氙气灯进行 劣化试验。 C. Reid ③ 报告称,使用 90 ℃ 50%R.H. 的氙气灯照射 2 周时间,相当于美国亚利桑那州的阳光照射一年。 EVA 的脱量可以通过 EVA 的 3545/cm 红外线吸收谱进行推算。同时建议,使用紫外萤光灯作为试验光源。太阳能电池板中的 EVA 黄变既受到紫外线的影响同时也受到高温高湿环境的影响,到底哪一种因素起支配作用取决于 EVA 中所加入的添加剂种类和数量,因此依产品各异。暴露于现实环境中的光伏组件会因 EVA 黄变而导致输出功率下降,但实际上更大的问题是 EVA 的分层。背板位于光伏组件的后侧,所受到的太阳光照射强度因安装方式和安装位置而不同,因此其试验条件的设定更加困难,有人提出按照受光面 30% 的光照强度进行试验。随着环境和能源问题的日益突出,***在光伏发电的支持力度也不断加大。 M. Kohl 等人采用紫外线灯进行试验,首先对受光面进行 1000 小时的照射,然后再对后侧背板进行约 330 小时的照射,并按照相反的顺序进行了对比试验,试验结果表明前者对背板造成的黄变更为严重 。
与氟系树脂相比 聚酯树脂 受紫外线照射后更加容易引起黄变和水解。为此,高价回收拆卸组件,有人提出改变现有 JET 的产品规格,也有人提出今后有必要在 PET 背板上增加一层 UV 吸收膜。
作为保证光伏组件安全性的重要一环,我们按照 IEC61215 进行了浸水漏电试验以及湿热循环试验,分别对电池板的初始状态以及湿热环境下暴露 2000 小时后的结果进行了测定。
太阳电池组装工艺简介:
工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个***的认识 .
1 、 电池测试:由于电池片制作条件的 随机性 ,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的 输出参数 (电流和电压)的大小对其进行分类。实人们对于雷电的敬畏与生俱来,从原始的群居社会,到现在的高科技时代,雷电的预防与躲避依旧是一老大难的问题。以提高电池的 利用率 ,做出质量合格的电池组件。
2 、 正面焊接:是将 汇流 带焊接到电池正面(负极)的主栅线上,汇流带为 镀锡 的 铜带 ,我们使用的 焊接机 可以将焊带以多点的形式 点焊 在主栅线上。焊接用的热源为一个 红外灯 (利用 红外线 的 热效应 )。焊带的长度约为电池边长的 2 倍。多出的焊带在背面焊接时与后面的电池片的背面 电极 相连
版权所有©2025 产品网