***净化工艺设计中主要设备的选择和应用建议
(一)废热锅炉和硫冷凝器的应用建议
***净化过程中对硫进行回收的废热锅炉,通常都处在一个高温差、高压力、高热和高硫腐蚀性的环境下,因此在实际生产过程中,废热锅炉的管头、热旁通管、高温端管板、硫冷凝器的出口端非常容易发生严重腐蚀的情况,捕沫网会随着腐蚀的加剧而破碎。现代科学研究中的一种观点认为:在海水的溶解下,铜会溶出一种***1的铜离子,这种铜离子导致铜具有抗污损的能力。因此,要从如下几个方面加强对废热锅炉工艺和设备的管理:
1、管板的材质选择以及对传热系数的计算;
2、高温端的防腐隔热保护,以及炉管的厚度和耗材选择;
3、选择合适的结构形式,以缩小锅炉的体积,提高传热的效率,防止出现局部过热的情况;
4、针对掺合管的形式和掺合方式进行改进,从设计和操作上避免出现硫积存的情况。
对于冷凝器的操作要尽可能避免出现由于硫积存而引发的堵塞情况,以及由于燃烧导致的剧烈腐蚀。
(二)工艺炉应用建议
工艺炉主要包括再热炉、硫回收炉、再热炉、尾气处理炉、辅助焚烧炉、尾气灼烧炉以及加热炉等。工艺炉在工艺和管理上要着重做到以下几点:
1、尽量提高热的强度,降低炉体的尺寸;
2、使用高1效的燃烧器,设置有效的点火和监控系统;
3、使用新型的耐热衬里和衬里局部维***,延长工艺炉的使用寿命。
(三)塔系列应用建议
***净化工艺中使用到的塔包括再生塔、闪蒸塔、斯科特急冷塔、脱硫吸收塔和酸水汽提塔等。如何高1效的使用塔器,是***净化工艺设计和优化的主要问题,因此,在塔的应用过程中要尤其关注如下几个方面:
1、对塔的内部结构进行改进,增强构件的强度,防止塔的内部出现由于拦液发泡、腐蚀或气流波动冲击引发的垮塌和脱落情况;
2、经常对塔的气体分离部分进行清洁,防止出现腐蚀、气体带入物引发的淤积情况,减少塔盘和浮伐的结垢;
3、从材质的选择、内部涂层、加工制造、缓蚀剂和锈垢清除等多个方式入手,减缓塔内各部分的腐蚀情况。
(四)换热器系列优化
列管式换热器是目前被广泛使用的换热设备之一,该换热器的主要特点是传热的效果好、传热的面积大、设备设计结构坚固紧凑,并且适应性强。这些能量可以利用在诸如:发电、冷冻仓库、空气液化分离、比如低温破碎、制造液化二氧化碳水以及冷冻食品、污染物处理等方面。在实际生产过程中,为了有效提高管壳式换热器的温差系数,要选用两台或两台以上设备串联。通常情况下,贫液会从换热器处经过,贫液的温度也会从120℃降低到86℃,再经过串联的另外2台贫液冷却器后温度***终降到36℃。而如果设置的冷却器数量不足,就会严重影响热量的吸收效果,导致外输的净化气质量不合格。另外,碳钢管壳换热管多会发生垢下腐蚀和缝隙腐蚀情况,这主要是由于水流速低,污垢极易沉积造成的。研究表明,不锈钢流体管制作的换热管能够取得较好的效果,使用寿命都在10年以上。
(五)分离器的选型
各种原料气分离器、液体过滤器是保证***净化质量的重要设备。2、将翅片管外侧空气自然对流、固体导热和翅片管内LNG气化相变过程进行耦合,采用切割shadow面的方法确保流固耦合界面热边界条件的一致性,可以更合理地模拟了LNG空温式翅片管气化器的传热传质过程,使计算更趋精1确化。在实际生产过程中,经常会出现原料气注入分离器后出现的“夹层”现象,进而导致分离器的停用。所以,防腐仍然是保证该类设备正常运行的重要方式。杂物堵塞导致的分离器液位无法正确显示,是影响设备正常运行的***1大问题。另外,还要选择廉价、耐用、高1效的滤芯,以及快速简洁的清洗拆卸工艺。不同的储罐要根据实际的使用情况进行定期的清理。
(六)转动设备的应用建议
对于转动设备,要保证其接触介质的部位所使用的材质具有较强的抗腐蚀性和耐磨性,除此之外,突然断电也会对转动设备产生很大的影响,因此要安装断电自启动装置,这对提高转动设备的使用寿命是很有必要的。
(七)回收装置的优化改造
在硫磺回收过程中,烟气再热能够使二级反应的更充分,对提高硫磺的回收率具有重要的意义。而双相不锈钢这种材料具有抗点蚀的特性,同时在查阅相关资料时得出,双相钢在天然的海水中会出现一定的缝隙腐蚀,而在流动及合成海水中出现的腐蚀程度较轻。在实际生产过程中,要保证二级反应器的进口温度能够满足设计的要求,这可以通过大幅提高烟气的总质量来达到。另外,还可以在烟气炉的尾部使用瓷管和耐火材料形成一个较厚的挡火墙。根据***净化工艺现场的生产运行情况可以看到,使用新的鼓风机设备后,炉膛的温度回复正常,烟气量加大,流速变得更快,换热的效果良好,从而第二级反应器的进口温度能够完全满足设计的要求,提高了硫磺的回收率,与此同时,挡火墙也有效阻止了火焰对换热器前管板的损坏,延长了设备的使用寿命。
液化***空温式气化器传热性能分析(下)
三、LNG 空温式气化器传热传质特性分析
液化***在空温式翅片管气化器中的气化过程是管内流动沸腾相变和空气侧自然对流传热过程的耦合。另外要经常对电机内的情况进行检查,确保其中无杂物以及其他导电物体的存在,以免发生短路等***。低温液化***在翅片管内流动,在温差的驱动下热量由空气经过翅片、基管传给管内液化***,管内液化***温度升高至泡点后开始气化并升温,与此同时,翅片管外侧近壁处空气温度降低,密度增大,产生自然对流。常用的空温式翅片管气化器的进口设在气化器底部,出口设在气化器上部,启动时,LNG 从底部流入气化器,在流道内吸热气化,温度沿管长方向不断上升,***终从出口流出。
四、LNG 空温式气化器单根翅片管数值模拟
LNG 在空温式气化器内气化的整个过程为自然对流、导热、强迫对流及沸腾相变的耦合问题,有实际意义的物理问题大多无法获得解析解,只能采用数值计算的方法。针对这一故障,首先要查看计算机驱动程序的工作情况(有无实时更新和计量数据),若有数据更新,一般都可能组态软件出现故障,重启软件即可***,该故障不影响计量数据的正确性。数值模拟将数学分析理论、物理模型、装置设计等结合起来,以计算机为操作平台,短时间内可对物理几何参数分布广的模型进行计算,有助于对客观物理规律的研究,而且具有研究周期短、节省费用的优势,在工程设计和研究中有着积极的作用。
在实际操作中应利用数值模拟方法,在空气侧自然对流和管内相变条件下对影响空温式气化器单根翅片管传热性能的几何参数、空气温度及流速进行研究。(6)检查交流接触器触头的传导性,以及安全性,防止发生漏电等***。在对LNG空温式气化器单根翅片管的传热传质过程进行数值模拟时,首先,可利用Fluent软件(一种求解流动与传热等问题的大型数值模拟软件)进行计算并应用数学模型进行模拟, 使用 Gambit 建立几何模型并进行合理的网格划分,确定模型中边界条件的类型及输入参数,编写 UDF 自定义程序描述 LNG 沸腾相变过程,可得到温度场和速度场等势图,以及管内气化率和温度沿管长的分布,***后要注意分析下翅片外侧空气温度和翅片管内 LNG 入口流速对空温式气化器单根翅片管传热性能的影响。
五、结论及注意事项
1、空温式气化器不消耗外加能源,气化能耗费用低,在我国南方地区得到广泛认可与应用。
2、将翅片管外侧空气自然对流、固体导热和翅片管内 LNG 气化相变过程进行耦合,采用切割 shadow 面的方法确保流固耦合界面热边界条件的一致性,可以更合理地模拟了 LNG 空温式翅片管气化器的传热传质过程,使计算更趋精1确化。
3、通过对翅片管传热传质过程进行数值模拟,可得到翅片管横截面的温度场和速度场分布、管内截面平均气化率和温度沿管长的变化以及传热系数等,能更直观地描述 LNG 在翅片管内气化的整个传热传质过程。
4、要注意空气温度变化对翅片管传热性能的影响。在 280K-300K 范围内,随着空气温度升高,总换热量增大,纯液相段长度缩短,***出口温度增大,即空气温度越高,翅片管的传热性能越好,扩大了空温式气化器的应用范围。
5、要注意分析 LNG 入口流速对翅片管传热性能的影响。设备的日常维护***设备的日常维护***工作对于减少设备磨损,是设备保持良好的运作状态的基础。流速在 0.03-0.09m/s 范围内,随着流速的增大,翅片管总换热量和内管对流传热系数增加,但进出口焓差减小,气态***的出口温度降低,应综合考虑多个换热指标的变化趋势,来确定哪一个结构尺寸的翅片管的***1佳入口流速。
LNG液化***贮罐相关介绍
LNG贮罐(低温贮罐)是LNG运输车的组成部分,属于LNG的贮藏设备LNG贮罐的特殊性:大容量的LNG贮罐,由于是在超低温的状态下工作(-162℃),因此与其他石油化工贮罐比具有其特殊性。特别是冬天室外温度较低,会对仪表计量产生较大的负误差,长期使用会导致机械磨损和皮膜老化,给计量带来较大误差。同时在运行中由于贮藏的LNG处于沸腾状态,当外部热量***时,或由于充装时的冲击、大气压的变化,都将使贮存的LNG持续气化成为气体,为此运行中必须考虑贮罐内压力的控制、气化气体的抽出、处理及制冷保冷等。此外,LNG贮罐的安全阀、液面计、温度计、进出口管的伸缩接头等附属件也必须要耐低温。贮罐的安全装置在低温、低压下,也必须能可靠的起动。
版权所有©2024 产品网