活塞环主要分为气环和油环两种。
活塞环的作用
气环的作用是保证气缸与活塞间的密封性,防止漏气,并且要把活塞顶部吸收的大部分热量传给气缸壁,由冷却水带走;油环起布油和刮油的作用,下行时刮除气缸壁上多余的机油,上行时在气缸壁上铺涂一层均匀的油膜。这样既可以防止机油窜入气缸中燃烧掉,又可以减少活塞与气缸壁的摩擦阻力。此外,油环还能起到辅助封气的作用。
活塞环的工作条件及性能要求
活塞环工作时受到气缸中高温、高压燃气的作用,温度较高(尤其是,温度可达600K)。活塞环在气缸内做高速运动,加上高温下部分机油出现变质,使活塞环的润滑条件变差,难以保证液体润滑,磨损严重。因此,要求活塞环弹性好,强度高、耐磨损。
活塞环的间隙
活塞环会在发动机运转过程中与高温气体接触发生热膨胀现象,而周期性的往复运动又使其出现径向胀缩变形。因此,为了保证正常的工作,活塞环在气缸内应该具有以下间隙。
d—活塞环内径;B—活塞环宽度
■ 端隙又称开口间隙,是指活塞环在冷态下装入气缸后,该环在上止点时,环的两端头之间的间隙。一般为0.25~0.50mm。
■ 侧隙又称边隙,是指活塞环装入活塞后,其侧面与活塞环槽之间的间隙。第道环因为工作温度高,间隙较大,一般为0.04~0.10mm;其他环一般为0.03~0.07mm。油环侧隙比气环小。
■ 背隙是指活塞环装入气缸后,活塞环内圆柱面与活塞环槽底部间的间隙,一般为0.50~1.00mm。油环背隙较气环大,有利于增大存油间隙,便于减压泄油。
活塞环的泵油作用
由于侧隙和背隙的存在,当发动机工作时,活塞环便产生了泵油作用。其原因是,活塞下行时,活塞环靠在环槽的上方,活塞环从缸壁上刮下来的机油充入环槽下方;当活塞上行时,活塞环又靠在环槽的下方,同时将机油挤压到环槽上方。如此反复运动,就将缸壁上的机油泵入燃烧室。由于活塞环的泵油作用,使机油窜入燃烧室,会使燃烧室内形成积炭和增加机油消耗,并且还可能在环槽(尤其是第道气环槽)中形成积炭,使环卡死,失去密封作用,甚至折断活塞环。
气 环
■ 气环的密封机理
活塞环有一个切口,且在自由状态下不是圆环形,其外形尺寸比气缸的内径大些,因此,它随活塞一起装入气缸后,便产生弹力而紧贴在气缸壁上。
活塞环在燃气压力作用下,压紧在环槽的下端面上,于是燃气便绕流到环的背面,并发生膨胀,其压力下降。同时,燃气压力对环背的作用力使活塞环更紧地贴在气缸壁上。压力已有所降低的燃气,从第道气环的切口漏到第二道气环的上平面时,又把这道气环压贴在第二环槽的下端面上,于是,燃气又绕流到这个环的背面,再发生膨胀,其压力又进一步降低。
如此继续进行下去,从后一道气环漏出来的燃气,其压力和流速已经大大减小,因而泄漏的燃气量也就很少了。因此,为数很少的几道切口相互错开的气环所构成的“迷宫式”封气装置,就足以对气缸中的高压燃气进行有效的密封。
气环的断面形状及各环间隙处的气体压力
■ 气环的切口
气缸内的燃气漏入曲轴箱的主要通路是活塞环的切口,因此,切口的形状和装入气缸后的间隙大小对于漏入曲轴箱的燃气量有一定的影响,切口间隙过大,则漏气严重,使发动机功率减小;间隙过小,活塞环受热膨胀后就有可能卡死或折断。切口间隙值一般为0.25~0.8mm。第道气环的温度,因而其切口间隙值。
气环的切口形状
直角形切口工艺性好;阶梯形切口的密封性好,但工艺性较差;斜口形切口,斜角一般为30°或45°,其密封作用和工艺性均介于前两种之间,但其锐角部位在套装入活塞时容易折损;图中(d)为二冲程发动机活塞环的带防转销钉槽的切口,压配在活塞环槽中的销钉,是用来防止活塞环在工作中绕活塞中心线转动的。
■ 气环断面形状
气环的断面形状
■ 矩形环的优点是结构简单、制造方便、散热性好、废品率低;缺点主要是有泵油作用,容易造成机油消耗量过大并有可能形成燃烧室积炭。另外,矩形环的刮油性、磨合性及密封性较差,现代汽车基本不采用。
■ 锥面环的优点是与气缸壁的接触为线接触,密封和磨合性能较好,刮油作用明显,容易形成油膜以改善润滑;缺点是传热性能较差。锥面环主要应用在除第道环外的其他环。
■ 扭曲环是当代汽车发动机广泛应用的一种活塞环,主要是因为扭曲环除具有锥面环的优点之外,还能减小泵油作用,减轻磨损、提高散热性能。安装扭曲环时应特别注意:内圆切槽向上,外圆切槽向下,不能装反。
■ 梯形环的主要优点是能把沉积在环槽中的结焦挤出,从而避免了活塞环被黏结而出现折断,同时其密封性能优越,使用寿命长;缺点主要是上下两端面的精磨工艺较复杂。梯形环在热负荷较大的柴油发动机上使用较多。
■ 桶面环的优点是活塞的上下行程都可以形成楔形油膜以改善润滑,对活塞在气缸内摆动的适应性好,接触面积小,有利于密封;缺点是凸圆弧面加工困难,多用于强化柴油发动机的第道环。
油 环
油环分为普通油环和组合油环两种。
普通油环是用合金铸铁制造的。其外圆面的中间切有一道凹槽,在凹槽底部加工出很多穿通的排油小孔或狭缝。油环上唇的上端面外缘一般均有倒角,可以使油环向上运动时能够形成油楔。机油可以把油环推离气缸壁,从而易于进入油环的切槽内。下唇的下端面外缘不倒角,这样向下刮油能力较强。鼻式油环和双鼻式油环的刮油能力更强,但加工较困难。
油环及其刮油作用
油环的断面形状
对于由三个刮油钢片和两个弹性衬环组成的组合式油环,轴向衬环夹装在第二、第三刮油片之间,径向衬环使三个刮油片压紧在气缸壁上。这种油环的优点是,片环薄,对气缸壁的比压(单位面积上的压力)大,因而刮油作用强;三个刮油片是各自***的,故对气缸的适应性好;重量轻;回油通路大。因此,组合油环在高速发动机上得到较广的应用。其缺点是制造成本高(片环的外表面必须镀铬,否则滑动性不好)。
刀具是现代切削加工中极其关键的根底部件,其功能直接影响加工功率和已加工零件的表面质量。即使对刀具刃口进行细心的磨削,刀具刃区的描摹依然会存在细微缺点,然后降低刀具的寿数和加工质量。刀具刃口钝化能够延常刀具使用寿数50%-400%。因此,近年来刀具钝化技能越来越受到重视。
国内外学者关于刀具刃口钝化展开了大量的研讨。Tugrul ozel选用切削软件进行方真,研讨了钝化后的PCBN刀具切削铝合金时的应力和切削力等的改变规则;P.I.Varela等研讨了不同的刃口形状对切削后的剩余应力及已加工零件的表面质量的影响,验证了刀具刃口钝化能够有用提高加工表面质量;贾秀杰等选用切削实验探究了钝化后的刀具在不同的切削参数下切削工件时,产生的切削力和被加工零件的表面质量随切削参数改变而改变的规则;朱晓雯选用了7种不同的钝化工艺对硬质合金刀具进行钝化处理,其间包含立式旋转钝化法,并经过实验探究了不同钝化方式对硬质合金刀具寿数的影响。
刀具钝化刃口尺度归于微米级,通常选用钝圆半径表征刃口概括。实际上,刀具钝化的刃口概括并非规则的圆弧,仅仅选用钝圆半径不足以表征实际的钝化概括。B.Denkena等提出了任何切削刃的非对称问题K-factor方法,选用从极点刀尖1和刀尖2的比率Sa/Sγ即K因子来表示,边缘的扁平度经过参数△γ和φ的比值来表示,这种方法相对简单且可视化;C. F. Wyen等提出刀具刃口钝化形状的非对称性问题,以一个圆的形式描绘刃口钝化形状,选用Da和Dγ的比率来测量垂直极点与两边的距离,选用R2≤0.9判定系数验证。
目前通常选用K因子表示刀具钝化非对称刃口。当K=1时,刀具钝化刃口为对称刃口,即为钝圆半径。当K≠1时,刀具钝化刃口为非对称刃口。国内外关于刀具钝化非对称刃口机制的研讨十分少C.E.H.Ventura等选用研磨法对CBN刀具进行钝化,经过实验验证了不同的K因子对刀具刃口磨损的影响程度不同,选择合适的K值以减少磨损;E.Bassett等选用磨料刷法对刀具进行钝化,研讨了不同K因子的非对称刃口对涂层WC-Co刀具切削AISI1045的磨损和热力散布的影响规则,经过实验验证了Sα值影响刀具寿数,主要是后刀面磨损。因此,对刀具非对称刃口钝化的研讨是必要的。
本文选用刀具刃口钝化进行正交实验研讨,对硬质合金刀具进行立式旋转钝化,经过对实验成果进行数学回归分析,研讨了刀具钝化非对称刃口K因子随不同钝化参数的改变规则,为实现刀具钝化刃口优化供给依据。
1 刀具刃口钝化实验
如图1所示,在立式旋转钝化机上进行刀具钝化处理。刀具装夹在刀盘上,刀盘固定在主轴上,由碳化硅、棕刚玉以及核桃粉按照必定配比组合成的分散固体磨粒装在磨粒桶中。成组刀具在磨粒中实现公转及自转,单个刀具实现公转及自转,达到钝化的意图。
刀具选用标准号为ZX040的硬质合金立铣刀。刀具前角14°,后角15°,刃长25mm,直径10mm,柄长75mm。
选用Alicona光学三维刀具测量仪对钝化后的刀具非对称刃口进行检测(见图2)。刀具钝化非对称刃口检测成果如图3所示。
依据钝化速度、钝化时刻、磨粒配比和磨粒粒度规划正交实验。其间,磨粒由棕刚玉和碳化硅组成,磨粒配比为碳化硅与棕刚玉的比值。刀具钝化正交实验成果见表1。
图1 刀具刃口钝化机 图2 光学三维刀具测量仪
图3 刀具钝化非对称刃口检测成果
表1 刀具钝化正交实验
实验成果表明,不同的钝化参数对刀具非对称刃口的影响程度不同。钝化时刻对刀具非对称刃口K因子的影响蕞大,磨粒配比与主轴转速次之,磨粒粒度对刀具非对称刃口K因子的影响蕞小。
2 刀具钝化非对称刃口模型的树立
选用数学回归法树立刀具非对称刃口K因子的猜测模型,把刀具钝化4个钝化参数作为自变量,刀具钝化非对称刃口K因子为因变量。依据正交实验成果进行数学回归,获得刀具钝化非对称刃口K因子的猜测模型。
Y=1.352-0.00003651A-0.024B 0.000007221AD 0.004BD-0.002CD (1)
式中,Y为因子;A为主轴转速(mm/min);B为钝化时刻(min);C为磨粒粒度(目数);D为磨粒配比。
为查验数学回归法构造的的刀具钝化非对称刃口K因子模型能否较好地体现各自变量与因变量之间的函数关系,选用F查验法进行显著性查验,K因子模型的F法查验,成果见表2。
查F散布表,当α=0.05 时,F=(4,4)=6.39,因为F比16.591gt;6.39,从刀具钝化非对称刃口K因子模型的F查验法的查验成果可知,该猜测模型能够较好地反映刀具钝化非对称刃口K因子与主轴转速、钝化时刻、磨粒粒度和磨粒配比之间的关系。
表2 刀具钝化非对称刃口K因子模型的方差分析表
小结
选用立式旋转钝化法进行刀具刃口钝化实验,经过正交实验研讨刀具钝化非对称刃口K因子随钝化参数的改变规则,对刀具钝化非对称刃口K因子的影响蕞大的是钝化时刻,其次是磨粒配比与主轴转速,磨粒粒度对刀具钝化非对称刃口K因子的影响蕞小。选用数学回归方法树立了刀具钝化非对称刃口K因子的猜测模型,选用方差分析验证了该模型的正确性。
在德国刀具制作商Horn公司每两年举办一次的“技术开放日”上,媒体记者获邀参观了该公司坐落德国图宾根市的硬质合金刀片毛坯生产线,亲眼见证了用包含多种不同成分的混合粉料生产可转位刀片的全进程。
Horn公司生产的各种刀具产品(如铣刀、车刀、拉刀、铰刀等)广泛采用了可转位刀片。图1中的旋转展台展示了该公司蕞新开发的一些立异产品,包含圆柄和削柄25A端面切槽体系、用于S100内冷却车削刀片的新式刀夹等。
图1
Horn公司在世界各地的刀具生产厂都能够对烧结而成的刀片进行刃磨成形加工,但一切的刀片毛坯都来自坐落图宾根的Horn
Hartstoffe硬质合金生产厂。制坯工艺的地一步是将不同配比的碳化物、结合剂资料(如钴和钽)以及后续加工所需的添加剂经精密称量后制成混合粉料(图2)。在冶金实验室对质料进行的检验检测后,对其进行搅拌混合,直至达到所要求的浓度,然后送至下一道工序,用三种成型办法(轴向压制成型、挤出成型或打针成型)之一进行毛坯成型加工。
图2
如果刀片的形状比较简单,一般可采用如图3所示的电动轴向压坯机压制成型。这种常用的刀片压制办法是将粉料放入模具之中,经过单向或双向加压,压制出终究形状。虽然该办法比其他成型办法更简洁(如在烧结前无需参加添加剂),但却不适合压制较杂乱的刀片形状,因为刀片脱模或许比较困难(或许完全无法脱模)。Horn公司这台压坯机采用了机器人自动装料/卸件设备(见压坯机左侧)。
图3
形状较杂乱的刀片一般是在如图4所示的活塞式挤出成型机上成型。该机推挤原资料经过一个模具而取得所需的形状。值得注意的是,利用浮动芯轴销,能够在刀片毛坯内部构成内冷却通道。在挤出成型机下部能够看到,构成的生坯呈长条状,还需要将其切成所需长度,经过清洁后再送去进行预烧结和烧结。
图4
用于挤出成型的粉料中含有各种蜡和其他添加剂,这些添加剂可使加工出的刀片生坯具有延展性并呈橡胶状(见图5),这些长条形生坯还要切成所需尺度,并在后续工序中成型。随后,这些添加剂将在预烧结工序中予以去除。
图5
Horn公司还开发了一种用于大批量生产杂乱形状刀片毛坯的金属打针成型工艺(图6所示为两个装在流道上的刀片的3D设计图)。该工艺所用的打针成型机能够设置超过5000种不同的工艺参数和变量。注入资料的体积范围为0.2-20 cm3,打针速度为6m/sec,打针压力蕞大可达2,200bar,模具重量范围为150-200kg。
图6
与打针成型机、压坯机和挤出成型机相邻的工区(见图7)专门担任为硬质合金刀片生产线制作东西和夹具。为此,Horn公司装备了电火花加工机床、车床、三轴和五轴铣床、平面磨床和坐标磨床等机床,以及微喷砂体系、激光测量仪和三坐标测量机等设备。
图7
用挤出成型机或打针成型机成型的刀片生坯经过清洁后,还必须进行预烧结。这道工序耗时2-4天,生坯要在氢气氛炉中逐步加热到850℃左右,使其中的各种添加剂受热挥发,并使生坯预固化。刀片毛坯经过预烧结后,即可进入烧结阶段(用轴向压坯机成型的毛坯无需预烧结,可直接进行烧结)。经过在1,350℃-1,550℃的高温文可达100bar的气体压力下进行烧结,刀片资料即可取得其终究的物理性能。在烧结进程中,资料部分呈液相状况,碳化物以相同的方法重新排列,构成无孔隙的同质结构。此外,烧结后刀片的体积大约会比烧结前缩小20%-22%(见图8)。整个烧结进程大约需要持续20小时才干完结。
图8
经过一系列计量室测试和质量控制程序(包含扫描电镜检测、维氏硬度检测、密度检测、磁饱和度检测等)之后,各批制品刀片毛坯将从硬质合金工厂运送到同样坐落Horn工业园区的刀具生产厂,并在那里的专用磨床(见图9)上刃磨出刀片的终究形状。DMG/森精机公司专门为Horn公司提供的铣床渠道也能够满意其刀具刃磨的特定需求。Horn刀具生产厂的加工机床总数超过200台,这些机床均按所加工的刀片类型分组。
图9
图10所示为Horn公司员工将刃磨好的刀片置于夹具上,准备对其进行清洁和喷砂处理。处理完毕后,再将这些夹具移至涂层炉中(Horn公司共有8台涂层炉)进行PVD或CVD涂层。完结涂层工序后,制品刀片就能够包装发货了。
图10
图11所示为Horn公司生产夹持刀片的刀体和刀夹的加工车间。
图11
Horn公司从事各种刀片生产任务的许多员工都曾参加过企业自己的学徒训练计划。图12中正在操作五轴加工中心的学徒已处于训练的高及阶段。在参与手动和数控加工之前,学徒们先要学习一些基本技能(如整理文档)。
由于CNC加工中心其是采用软件进行锁住的,在模仿加工时,当按下主动运转按钮时在模仿界面并不能直观地看到机床是否已锁住。模仿时往往又没有对刀,假如机床没有锁住运转,极易发生撞刀。所以在模仿加工前应到运转界面确认一下机床是否锁住。加工时忘掉关闭空运转开关。由于在程序模仿时,为了节省时刻常常将空运转开关打开。空运转指的是机床一切运动轴均以G00的速度运转。假如在加工时空运转开关没关的话,机床疏忽给定的进给速度,而以G00的速度运转,形成打刀、撞机床事端。空运转模仿后没有再回参考点。在校验程序时机床是锁住不动的,而刀具相对工件加工在模仿运转(决对坐标和相对坐标在变化),这时的坐标与实践方位不符,须用返回参考点的办法,确保机械零点坐标与决对、相对坐标一致。假如在校验程序后没有发现问题就进行加工操作,将形成刀具的磕碰。超程免除的方向不对。
当机床超程时,应该按住超程免除按钮,用手动或手摇办法朝相反方向移动,即能够消除。可是假如免除的方向弄反了,则会对机床产生伤害。由于当按下超程免除时,机床的超程维护将不起作用,超程维护的行程开关已经在行程的尽头。此刻有或许导致工作台继续向超程方向移动,终拉坏丝杠,形成机床损坏。制定行运转时光标方位不妥。制定行运转时,往往是从光标所在方位开始向下执行。对车床而言,需要调用所用刀具的刀偏值,假如没有调用刀具,运转程序段的刀具或许不是所要的刀具,极有或许因刀具不同而形成撞刀事端。当然在加工中心、数控铣床上一定要先调用坐标系如G54和该刀的长度补偿值。由于每把刀的长度补偿值不一样,假如没调用也有或许形成撞刀。
CNC加工中心数控机床作为的机床,防撞是非常必要的,要求操作者养成认真细心慎重的习气,按正确的办法操作机床,减少机床撞刀现象发生。跟着技术的开展呈现了加工过程中刀具损坏检测、机床防撞击检测、机床自适应加工等***技术,这些能够更好地维护数控机床。
归纳起来9点原因:
(1)程序编写过错
工艺安排过错,工序承接联系考虑不周详,参数设定过错。
例:A.坐标设定为底为零,而实践中却以顶为0;
B.安全高度过低,导致刀具不能彻底抬出工件;
C.二次开粗余量比前一把刀少;
D.程序写完之后应对程序之途径进行剖析检查;
(2)程序单补白过错
例:A.单边碰数写成四边分中;
B.台钳夹持间隔或工件凸出间隔标示过错;
C.刀具伸出长度补白不详或过错时导致撞刀;
D.程序单应尽量详细;
E.程序单设变时应采用以新换旧之准则:将旧的程序单消毁。
(3)刀具丈量过错
例: A.对刀数据输入未考虑对刀杆;
B.刀具装刀过短;
C.刀具丈量要运用科学的办法,尽或许用较经确的仪器;
D.装刀长度要比实践深度长出2-5mm。
(4)程序传输过错
程序号呼叫过错或程序有修改,但仍然用旧的程序进行加工;
现场加工者必须在加工前检查程序的详细数据;
例如程序编写的时刻和日期,并用熊族模仿。
(5)选刀过错
(6)毛坯超出预期,毛坯过大与程序设定之毛坯不相符
(7)工件资料本身有缺点或硬度过高
(8)装夹要素,垫块干与而程序中未考虑
(9)机床故障,俄然断电,雷击导致撞刀等
版权所有©2025 产品网