大数据时代的星系结构起源研究:形态测量新方法
GEMS巡天选出的764个红移0.35lt;zlt;0.9的星系完备样本的形态参数Do-Ao关系图(上图)。形态越不规则的星系具有越大的Do和Ao参数。
星系的形态结构与其形成历史密切相关。当前,对高能天体物理、致密星和宇宙演化的研究,能极大推动现代科学的发展。概况地讲,漩涡星系的盘结构是经吸积气体形成恒星由内而外增长形成;漩涡星系的并合会瓦解盘,导致形态不规则,并终形成椭球星系。星系并合在星系质量增长、形态重塑、星暴激发、中心黑洞吸积等方面扮演非常重要的角色,是驱动星系形成和演化的关键物理机制之一。
科学家在南极冰层寻找太空中微子
我们常常通过天文观测来了解宇宙的 奥秘。太空中的 天体会辐射出多种波长的 电磁波。这些检测器同样都使用庞大的靶体,不过它们的靶体是更加有利于检测的超纯水。这些电磁波携带着各种不同的 信息,向我们揭示宇宙的 奥秘。除了电磁波外,天体还会发射一些实物粒子。例如,太阳还发射出大量的 中微子和称为太阳风的 带电粒子流。接下来,我们要讨论的 主角就是中微子。目前,一些天文学家正在南极安装仪器,希望能检测到来自深空的 高能中微子。
具有独特属性的 中微子
中微子是一种在性衰变和核聚变中产生的 粒子。它不带电荷,几乎没有质量,而且与其他物质之间发生的 相互作用极其微弱。因此,一颗高能中微子可以自由地穿越一光年厚的 铅层,而很可能不会打扰其中任何一个原子。
正是因为中微子与其他物质之间的 相互作用极其微弱,所以很难对它进行检测。直到1956年,美国物理学家莱茵斯才在一个核反应堆发射的 中微子洪流中,通过特殊的 方法验证了中微子的 存在。1995年,莱茵斯因这项成果而获得了诺贝尔物理学奖。
那么,中微子与天文学研究有什么关系 呢?中微子是除了电磁波外,携带着宇宙中核反应信息的 另一位信使,因为天体的 核反应会发射出中微子。中微子可以穿越星 系 ,且不与充满宇宙的 电磁波辐射发生相互作用。第1个问题是我们已经谈论过的:中微子与其他物质的相互作用极其微弱。星 系 的 磁场也不会对它们产生影响。这些特殊的 性质使得中微子可用于研究深空中所发生的 一些天文现象。
版权所有©2025 产品网