对于快速固化工艺而言,工艺设计的目的是尽量缩短交联反应所需要的时间。日本企业之所以坚持采用常规固化工艺,是因为在快速固化工艺中,为了加快反应速度需要使用多种添加剂,而这些添加剂会使材料的吸湿性变差并引起黄变。组件逆变器是将每个光伏组件与一个逆变器相连,同时每个组件有一个单独的大功率峰值跟踪,这样组件与逆变器的配合好。此外,对于快速固化工艺而言,如果不能尽量缩小层压过程的温度起伏,胶片内部一定会出现交联反应不充分或者交联反应过度的区域,从而降低材料的可靠性。不过,对于常规固化工艺而言,因为在自由 状态下进行热处理,容易受到 EVA 胶片或背板材料的膨胀和收缩的影响,对于制造技术有较高的要求。
对于 EVA 交联反应的评价,胶片成型厂一般使用 剥离强度试验机 ,而电池板厂则使用 交联度测试 仪,我们还使用了流变仪。一般情况下,相关部门对发电企业每生产出的一定量(如1MWh)可再生能源电力进行认证并核发一个绿色证书。因为流变仪的升温系统可以很好地拟合胶片层压和热处理的过程,对于 EVA 胶片的粘弹性可以做出预测。图 5 所示为采用流变仪测定 EVA 熔融和交联反应 的一个案例。
由于 EVA 会分离出,而会对电极以及电极接合部位的金属造成腐蚀,从而成为电池板输出功主下降的原因。美国强制 自愿市场在美国,与绿证交易相配套的可再生能源配额制不可忽视(RPS)。因此近市场上开始出现不含乙酰基的太阳能电池封装树脂材料,包括聚烯烃树脂(热塑性 / 热固性)、聚乙烯醇缩丁醛树脂(热塑性)以及硅树脂(热固性)等材料。还有象离聚物系(离子凝聚)和共聚物系(热固性)树脂材料,这些材料虽然还是含有乙酰基,但是并不容易分离出。如果电池模块内部使用了不耐酸的金属材料,就不能使用 EVA 而必须使用上面提到的这些封装材料。其中硅树脂具有的可靠性,目前人造上的太阳能电池板用的就是硅树脂封装材料。 28 年前在奈良县壶阪寺安装的硅树脂封装太阳能电池板至今仍能正常使用,这也是硅树脂具有高可靠性的例证。尽 管如此, EVA 仍然因其具有容易成型、熔融温度低以及价格低廉等诸多优势而被广泛使用。
并网逆变器的试验为蓄电池电压与a相电流波形图,为a相电压与电流波形图。为了改进风力发电机发电系统的运行性能,近年来发展了基于交-直-交变流器的变速风力发电系统。c为输出电流的频谱图。实验结果表明,在蓄电池电压稳定的条件下,逆变器输出电流是稳定的正弦波,且与电网电压相位相反,因而实现了单位功率因数传送电能。逆变器输出电流频率基本是50Hz。谐波含量达到了并网要求。
很多企业对太阳能电池组件的保用期限达到 20 年。金属锌的化学性质比铜活泼,当这两种金属同时处在酸液中时,锌就会失去电子,这些失去的电子沿着导线传到铜片上,形成电流。生产商当然不会真的耗时 20 年去对产品做寿命评价,因此必须进行加速老化试验。对于太阳能电池的评价一直采用 国际电工( IEC )的标准, 但是 IEC 标准对电池寿命的评价并不充分,目前正在探讨对其进行修正。例如太阳能电池质量保证论坛,正在以欧美日为中心***开展大规模的讨论。首先对旧的光伏组件的性能进行评价,分析导致其性能劣化的主要原因,再通过加速老化试验对性能劣化的结果进行比较。然而,由于电池板所用材料不同,导致光伏组件性能劣化的机理各异,模拟劣化所需的活化能也各不相同。由于寿命评价所需时间占用了产品开发周期的一大部分,太阳能电池板制造企业正在寻求一种用时较短的加速评价方法。此外,不管是旧的光伏组件还是新的产品,对于其寿命的改善是一直持续进行的,这就引发了另外一种议论,即对于新的光伏组件而言,如果采用与过去的产品相同的劣化试验方法是否合理。
版权所有©2025 产品网