发酵罐冷却面积与搅拌
酵工艺由小种量一次性糖发酵改变为大种量流加糖发酵;种量比过去增加4-6倍,发酵高峰发烧量显著增加,发酵罐冷却面积需相应增加,在未采用冷冻水冷却情况下,冷却面积设置一般为发酵罐体积1.5-1.8倍为宜。冷却管布置可由内列管,内盘管和罐壁外盘管根据发酵罐大小和冷却水质情况,进行不同组合排布。公道利用罐体空间,知足发酵冷却需要,同时节约水资源。
搅拌档数:传统发酵罐搅拌大多为多档搅拌,以达到发酵溶氧要求。但有关试验得出,知足发酵液中溶氧水平,主要取决于发酵罐底档搅拌气液混合效果。经改进搅拌器结构形式,在罐底部负气液充分混合,负气泡直径微型化,达到乳化状态,进步溶解氧。这样搅拌档数可减少,由三挡、四档减至二档或一档。也能知足发酵要求,使电耗大幅度下降,节电30%-50%。
搅拌器结构:传统搅拌器一般为三弯叶、四弯叶和六弯叶轮。为使发酵液溶解氧水平进步,搅拌叶轮,从少叶向多叶(八弯叶、十弯叶等)设计,叶片设计成既有径向流又有轴向流的混合流型复合式叶片,以进步混合乳化强度,利于发酵出产。
特殊混合器:利用压缩空气的推动力开释能量,负气液混合乳化,进步溶氧,节约能源。目前已有类型:
(1)喷环式射流混合器;
(2)旋流式混合器;
(3)静混合器等,对发酵产出、节能均有较好效果。
阀门宜采用软密封
阀门是在发酵设备中使用***多的附属设备,其中使用***多的是截止阀。阀门对介质的密封性可分为4级,即公称级、低漏级、蒸汽级和原子级。公称级与低漏级密封适用于关闭要求不严密的阀门,例如用于控制流量的阀门。蒸汽级密封适用于蒸汽和大部分其他工业用阀门的阀座、阀杆和阀体连接部的密封。原子级密封适用于介质密封性要求极高的场合,如宇宙飞船和原子能动力设备等。由于发酵工业中使用高温蒸汽对发酵设备进行灭菌,因此阀门对介质的密封性要求是蒸汽级密封。
由于在发酵过程中阀门开启频繁,经常受介质腐蚀、冲刷和气蚀的损害,因此对于阀门副结构,即阀座与关闭件互相接触进行关闭的部分的选择较为关键。阀门副结构的密封分为软密封和硬密封两种。硬密封的密封副结构是靠阀座与关闭件互相挤压发生微小弹塑性变形而形成一条闭合的圆形密封接触线。虽然这类阀门在应用初期密封效果良好,但是发酵阀门开启比较频繁,容易磨损先前形成的接触线,或者由于管道不清洁而使密封面产生压痕而损坏。而硬密封的密封副结构弹性变形量很小,形成新的密封接触线很困难,因此长期使用可能导致阀门泄漏,使发酵失败。软密封的阀门关闭件一般采用软质垫片,利用垫片较大的弹塑性形变形成较宽的环形密封接触带,以添塞密封面上的不平、消除间隙形成密封。其加工精度一般要求不高,如有特殊要求,阀体材料可采用不锈钢,软密封关闭件用可更换的聚四氟乙烯垫片,这样可通过经常更换聚四氟乙烯垫片来保证阀门的密封性。
发酵罐的操作使用优势简单叙述
发酵罐也是应用***广泛的生物反应设备。这类反应器具有结构简单、不易染菌、溶氧效率高、能耗低等优点。气升式反应器有多种类型,常见的有气升环流式、鼓泡式、空气喷射式等,生物工业已经大量应用的气升式发酵罐有气升内环流发酵罐、气液双喷射气升环流发酵罐、设有多层分布板的塔式气升发酵罐。
而发酵罐则是***原始的通气发酵罐,当然鼓泡式反应器内没有设置导流筒,故未控制液体的主体定向流动。现以气升环流式反应器为例说明其工作原理。前面已经简单提到气升环式反应器的特点,由于气升环流反应器内没有搅拌器,并且有定向循环流动,故具有多个优点,下面具体说明。
1、反应溶液分布均匀:气液固三相的均匀混合与溶液成分的混合分散良好是生物反应器的普遍要求,因其流动、混合与停留时间分布均受到影响。对许多间歇或连续加料的通气发酵,基质和溶氧尽可能均匀分散,以保证其基质在发酵罐内各处的浓度都落在0.1%~1%范围内,溶解氧为10%一30%。这对需氧生物细胞的生长和产物生成有利。此外,还需避免发酵罐液面生成稳定的泡沫层,以免生物细胞积聚于上而受损害甚至***。还有培养基成分尤其是有淀粉类易沉降的颗粒物料,更应能悬浮分散。气升环流反应器能很好地满足这些要求。
2、较高的溶氧速率和溶氧效率:气升式反应器有较高的气含率和比气液接触介面,因而有高传质速率和溶氧效率,体积溶氧效率通常比机械搅拌罐高,kLd可达2000h,且溶氧功耗相对低。
3、剪切力小,对生物细胞损伤小:由于气升式反应器没有机械搅拌叶轮,故对细胞的剪切损伤可减至***i低,尤其适合植物细胞及***的培养。
4、传热良好:好气发酵均产生大量的发酵热,如酵母培养旺盛期发酵热高达3.0~4.0×105kJ/(m.h),而传热温差则只有几度(℃),尤其夏季,若使用非冷冻水,则只有3-10℃左右,故需很大的换热面积与传热系数。发酵罐因液体综合循环速率高,同时便于在外循环管路上加装换热器,以保证除去发酵热以控制适宜的发酵温度。
版权所有©2025 产品网