青海单相自耦变压器厂多重优惠
作者:宏达变压器2020/9/10 23:28:03






自耦调压器的优势和劣势有哪些:

优点

降y起动器中的自耦变压器的变压比是固定的,而接触式调压器的变压比是可变的。自耦调压器的常见故障有哪些:1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大的冲击电流,这是为什么。自耦变压器与同容量的一般变压器相比较,具有结构简单、用料省、体积小等优点。尤其在变压比接近于1的场合显得特别经济,所以在电压相近的大功率输电变压器中用得较多,此外在10千瓦以上异步电动机降y起动器中得到广泛使用。但是,由于初次级绕组共用一个绕组,有电的联系,因此在某些场合不宜使用,特别是不能用作行灯变压器。因此,自耦变压器与普通的双绕组变压器比较有以下优点。

1)消耗材料少,成本低。因为变压器所用硅钢片和铜线的量是和绕组的额定感应电势和额定电流有关,也即和绕组的容量有关,自耦变压器绕组容量降低,所耗材料也减少,成本也低。

2)损耗少效益高。由于铜线和硅钢片用量减少,在同样的电流密度及磁通密度时,自耦变压器的铜损和铁损都比双绕组变压器减少,因此效益较高。

3)便于运输和安装。因为它比同容量的双绕组变压器重量轻,尺寸小,占地面积小。

4)提高了变压器的极限制造容量。变压器的极限制造容量一般受运输条件的限制,在相同的运输条件的限制,在相同的运输条件下,自耦变压器容量可比双绕组变压器制造大一些。

缺点

在电力系统中采用自耦变压器,也会有不利的影响。其缺点如下:

1)使电力系统短路电流增加。

由于自耦变压器的高、中压绕组之间有电的联系,其短路阻抗只有同容量普通双绕组变压器的(1-k/1)平方倍,因此在电力系统中采用自耦变压器后,将使三相短路电流显著增加。对于采用保护接零的低压系统,(考试.大)变压器低压侧中性点要直接接地当三相负载不平衡时,零线上会出现电流。又由于自耦变压器中性点必须直接接地,所以将使系统的单相短路电流大为增加,有时甚至超过三相短路电流。

2)造成调压上的一些困难。

主要也是因其高、中压绕组有电的联系引起的自耦变压器可能的调压方式有三种,第y种是在自耦变压器绕组内部装设带负荷改变分头位置的调压装置;第二种是在高压与中压线路上装设附加变压器。1A,如果铁芯多点接地,环流很大时,则流经铁芯接地线的电流会明显增大,有的可达几安甚至几十安电流。而这三种方法不仅是制造上存在困难,不经济,且在运行中也有缺点(如影响第三绕组的电压),解决得都不够理想。

3)使绕组的过电压保护复杂。

由于高、中压绕组的自耦联系,当任一侧落入一个波幅与该绕组绝缘水平相适应的雷电冲击波时,另一侧出现的过电压冲击的波幅则可能超出该绝缘水平。为了避免这种现象的发生,必须在高、中压两侧出线端都装一组阀型避雷器。

4)使继电保护复杂。

尽管自耦变压器存在着一定的缺点,但各国还是非常重视自耦变压器的应用,主要是与电力系统向大容量高电压的发展是分不开的,随着容量增大,电压升高,自耦变压器的优点就更为显著。

应用范围

自耦变压器在不需要初、次级隔离的场合都有应用,具有体积小、耗材少、的优点。常见的交流(手动旋转)调压器、家用小型交流稳压器内的变压器、三相电机自耦减压起动箱内的变压器等等,都是自耦变压器的应用范例。



变压器干燥处理原理及注意问题

变压器干燥的目的是除去变压器绝缘材料中的水分,增加其绝缘电阻,提高其闪络电压。电压在3kV以上的变压器都必须进行干燥处理。

变压器器身主要由铁心和线圈以及绝缘材料装配组成,装配好之后,在加入变压器油之前,一定要经过干燥处理工艺,以去除绝缘材料中的水分和气体,使其含水量控制在产品质量要求的限度之内,以保证变压器有足够的绝缘强度和运行寿命。综上而言,如果你经常使用变压器,那么,在运行和操作它们的时候,相应的过载情况以及绝缘部分的损坏情况一定要避免,因为它们的出现会为整个工程带来不利影响,让相应的工程作业质量和效率都有问题。对高压变压器,要求其绝缘材料的含水量在0.5%以内。

变压器干燥处理常用的方法

(1)感应加热法。变压器高压线产生的电磁是否有危害根据对部分地区变压器的了解情况,会发现有很多变电站高压线都在离人群居住不远的地方,我们都知道,接地变压器高压线有强大的磁场,既然有磁场就肯定有辐射,那么经常生活在这种强大的辐射中,对人的健康是否有影响呢。是将器身放在原来的油箱中,油箱外缠绕线圈通过电流,利用箱皮的涡流发热来干燥的。此时箱壁温度不超过115℃~120℃,器身温度应不超过90℃~95℃。为了缠绕线圈的方便,尽可能使线圈的匝数少些或电流小一些,一般电流选150A,导线可用35~50mm2。油箱壁上可垫石棉条多根,导线绕在石棉条板上。感应加热需要的电力,根据变压器的类型及干燥条件决定。

(2)热风干燥法。基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。将变压器放在干燥室中,通入热风进行干燥。干燥室可依据变压器器身大小用壁板搭合,壁板内满铺石棉板或其它浸渍过防火溶液的帆布或石棉麻布。干燥室应尽可能小,壁板与变压器之间的间距不应大于200mm。可用电炉、蒸汽蛇形管来加热。

采用电炉时消耗的电力按下式计算:每min通过干燥室热风量Q,按干燥室容积q来选择,一般用Q=15qm3来进行计算。

P≈0.07γQ(t2-t1) 式中P-所需电炉电力,kW γ-空气定压比热(均为0.31) t2,t1-进口热风温度与周围气温,℃

干燥时进口热风温度应逐渐上升,g温度不应超过95℃,在热风进口处应装过滤器或装金属栅网以消灭火星、灰尘。热风不应直接吹向器身,从器身下面均匀地吹向各部,使潮气通过箱中通风孔放出。

(3)真空干燥法。铁芯绝缘老化或夹紧螺栓套管损坏,会使铁芯产生很大的涡流,引起铁芯长期发热造成绝缘老化。这种干燥方法,是以空气为载热介质,在大气压力下,将变压器器身或绕组逐步预热到105℃左右,才开始抽真空进行处理。由于热传递较慢,内外加热不均匀(内冷外热),高电压大容量的变压器由于具有较厚的绝缘层,往往预热需要100h以上,生产周期很长,而且干燥得不彻底,很难满足变压器对绝缘的要求。但设备简单,操作简便。

(4)气相真空干燥法。二、影响空载噪声的其它因素当铁心油箱的固有频率与噪声频率接近时,将发生噪声共振现象,使噪声增大。这种干燥方法是用一种特殊的煤油蒸气作为载热体,导入真空罐的煤油蒸气在变压器器身上冷凝并释放出大量热能,从而对被干燥器身进行加热。由于煤油蒸气热能大(煤油气化热为306×103j/kg),故使变压器器身干燥加热更彻底,更均匀,效率很高,并且对绝缘材料的损伤度也很小。但由于结构较复杂,造价较高,目前只限于在110kV及以上的大型变压器器身干燥处理中应用。


电源变压器的中线接地方式怎么选才好

相信很多技术人员都了解的一点是,要制作电力专用的大功率电源变压器接地系统,第y个准备工作就是要接地极,也就是需要在离变压器不远的地方挖一个至少2米深、长10米的地沟,然后用G80的镀锌钢管2米长沿地沟等距分布3个,然后将钢管打下去,直至使其在地沟底部仅露出管头。输出电可从零电压起始调节、瞬时过载能力强、空载电流、空载损耗小,效率高、噪音小、寿命长。随后需要用50x5的镀锌扁铁焊接三个管头,后引出地面,回填土并夯实。在完成了接地极的制作后,就可以将大功率电源变压器接地线与引出的50*5镀锌扁铁连接了。在这一接地极的设计过程中,大功率电源变压器的容量大小将会决定其接地线大小。

在电力系统中,大功率电源变压器的中性点接地方式通常可以分为两个大类,一个是中性点直接接地或经过低阻抗接地,这一方法也被称为大接地电流系统。热风干燥法,这种方式是将变压器放在干燥室中,通入热风进行干燥。而另一类则是中性点不接地,经过消弧线圈或高阻抗接地,这一方法也被称为小接地电流系统。下面我们就来看一下这两种方法在实际应用中都适合那些电源变压器的选择。

在实际的应用中,对6-10kV的电力系统来说,由于设备绝缘水平按线电压考虑对设备造价的影响不大,因此为了提高供电可靠性,一般采用中性点不接地或经消弧线圈接地的方式就可以满足设备安全运行的需要了。应有良好的通风,***g排风温度不宜超过45℃,进风和排风温差控制在15℃范围内。而对于110kV及以上的电力系统而言,由于主要考虑的是降低设备绝缘水平,因此为了简化继电保护装置,一般会采用中性点直接接地的方式。并采用送电线路全线架设避雷线和装设自动重合闸装置等措施,以此来提高供电可靠性。


商户名称:无锡市宏达变压器厂

版权所有©2025 产品网