激光雷达的原理与结构
与雷达原理相似,激光雷达使用的技术是飞行时间(TOF, Time of Flight)。具体而言,就是根据激光遇到障碍物后的折返时间,激光测距,计算目标与自己的相对距离。激光光束可以准确测量视场中物体轮廓边沿与设备间的相对距离,这些轮廓信息组成所谓的点云并绘制出3D环境地图,精度可达到厘米级别,从而提高测量精度。
想象一下,当发出光脉冲时启动秒表,然后当光脉冲返回时停止计时器。通过测量激光的“飞行时间”,并且知道脉冲行进的速度,就可以计算距离。光以每秒30万千米的速度传播,因此需要非常高精度的设备来产生关于距离的数据。
激光的特性
激光和普通光的根本不同在于激光是一种有很bai高光子简并度的光。du光子简并度可以理解为具有相同模式(或波型)的光子数目,即具有相同状态的光子数目。
激光器主要由增益介质和谐振腔组成。谐振腔选模,增益介质通过受激辐射向确定的模提供能量,从而形成具有很高光子简并度的激光。高光子简并度表现出很好的单色性、方向性、相干性及高亮度;激光可被压缩成极短的超短脉冲,脉宽已达到秒量级,激光测距模组,能产生短至4.6 fs的超短激光脉冲,高达1020W/cm2的光功率密度。
想要了解更多激光雷达产品的相关内容,请及时关注北京北醒公司网站。
激光雷达三维成像
激光雷达系统主要由激光发射部分(脉冲激光器)、光子接收部分(望远镜)、光子检测采集部分(后续光路系统和信号检测采集系统)三个基本部分组成。激光器向空中发射激光脉冲,该激光脉冲在向上传播的过程中不断与大气中原子分子发生相互作用,激光测距多少钱,一旦该脉冲进入望远镜的视场,则相互作用产生的回波将被望远镜接收,该信号经过检测和处理后即可得到激光雷达回波信号。
版权所有©2025 产品网