船体变形与船舶动力推进系统耦合问题
为了建立推进动力系统与船体耦合的大动力系统理论,对其耦合形成机理与规律进行系统的研究,需要***解决如下问题:
(1) 大型船舶的大尺度效应影响下船舶推进装置工作不确定性。 大型船舶由于尺寸巨大造成船体
变形大、推进系统振动强烈,引发诸多参数相互耦合,影响船舶航行性能,即大尺度效应。由于大尺度效
应作用,导致大型船舶推进装置的实际工作状态与原始设计状态和建造状态不一致,其实际工作状态
受环境影响而在一定方位内变动,使得实际工况与设计工况不一致,出现了工作不确定性问题。
(2) 不同海洋服役环境下船体变形和船舶运动诱发的船舶推进装置-船体之间动力学耦合。 船舶 航行在海洋环境中,陕西柴油机回旋振动计算,海洋环境的风、浪、流等外激载荷是随机多变的,尤其是极端海洋环境外部激励载
荷作用在船体上时,引起大型船舶的船体不均匀变形和随机运动,并通过船体的传递作用引起船舶推
进动力装置过载响应,导致推进装置关键部件过载而***,机械系统状态超出了服役允许的范围而不
能工作,这就提出了大型船舶推进装置—船体动力学耦合性问题。
(3) 基于实验室试验模型的船舶设计与实际海洋服役环境条件下船舶航行性能两者之间的船舶 推进装置—船体之间航行性与能效性的一致性研究。由于实验室的测试条件不可能复原实际的海洋航 行环境,导致实验室测试得到的数据与船舶在海洋环境中的实际数据不一致,存在着一定的误差,这二 者的不一致是导致船舶设计数据与实船航行的航行性和能效性不一致的根本原因,如何消除其差异对 船舶工业的快速发展意义重大。
轴对中计算的目的是在对中时确定轴线轴承的位置,或优化轴线的轴承负荷,从而让船舶推进系在所有运行条件下安全运行。轴线轴承轴的位置由轴承衬套中心点的垂直与水平偏距以及基准线和轴承衬套轴之间的角度所决定。软件运行时,会自动计算轴线的偏差(图3)。
图3:轴承衬套中的接触应力
应用模型可自动从基本模型之上构建。基本模型中的任何改动都会立即更新轴线的偏差。由SD支持的轴对中技术包括直接计算、偏距探索、几何对中、悬链线对中和应变仪对中。由于软件具有反向工程功能,因此也可以根据已测量的弯曲负荷、轴承应力、千斤顶负荷、松垂与间歇,以及轴偏差来计算对中。
应用模型可以进一步开发,以满足具体的应用要求。用户可以增加额外的对象,例如集中力、临时支架和千斤顶,从而在实践中验证理论对中。一旦增加额外的支架和力,就会立即自动进行轴线偏差的重新运算。
版权所有©2024 产品网