1) 封装层进行器件综合时,由于金属层很厚,高频趋肤效应导致金属电流边沿分布。Peakview提供多电流层剖分(multi-sheet current),设计中可根据金属厚度,工作频率进行金属电流多层剖分,提升仿精度;
2) 支持多文件格式(如:Pcircuit file、ODB 、GDSII file)的导入、导出,方便不同格式来源的封装版图导入;
3) 提供版图合并功能,软件导入芯片版图和封装版图后,可完成多个***版图按需合并,对合并后的版图进行联合仿。在合并时,可以对版图进行旋转、坐标偏移设置,方便设计人员按照实际电路进行调整。
T-coil 是双端口桥式-T 网络的一种特例。 它有两个互相耦合的电感(两个电感常常对称
设计), 和一个桥接电容组成,设计中还要考虑两个电感的耦合因子、 线上插损等因素。
当某个负载加到 T-coil 电路时, 从节点 1 或 2 处看到的阻抗比较特殊;以及这两个节点
到节点 3(一般连接负载电容的)的传输函数(Vout/Vin)特性也比较有研究价值。
以一个共源级 mos 为例来讲,其输出的负载电容为 CL。当高频时, CL 容抗很小, M1 的
小信号漏流被 CL 基本拉到地, 导致输出电压 Vout 降低, 增益在要求宽频范围内平坦度较
差, 导致较低的工作带宽。
解决思路一: 可以给负载电阻 RD 串联一个 LD(inductive peaking 方案), 如下图(b),
电感的感抗会随频率增加,那么总的串联阻抗(RD jwL)会随频率增加,这样会在频率提升
过程中,迫使大量电流流经 CL,实现增益宽度一致性(增益大小会有所降低),是一种提升
工作带宽方法。
解决思路二: 可以在输出的信号路径中插入一个 T-coil, 如下图(c),下来可以分析在
这种情况下,传递函数(Vout/Vin)是个啥情况。
(1)
北京欧普兰长期和各个foundries有合作,对各种工艺都比较熟悉,IHP这种工艺,传输线设计,我公司能够正确解读其PDK信息,甚至在一些***IC设计软件上能够正确转换为对应工艺文件,所以能保证在项目传输线分析时工艺信息可靠。
(2)
LDE效应是指:终的版图加工尺寸和金属属性已和设计无关,取决于版图自身;不同金属层的这种效应也不相同;同一金属层会牵扯到方块电阻、走线宽度等和版图尺寸的依赖关系;而且各foundries的LDE效应不同。目前LDE对我们EDA设计带来很大挑战,在项目前期,准确的评估对应foundry的LDE效应,才能使我们的结合和实测结果更接近。
本次项目使用的工艺和反向芯片之前的工艺不同,因此存在LDE效应的差异,必须加以考虑。我司在和foundries长期合作过程中,已能获取它们各个工艺节点的LDE效应表,并进行转换调用。因此在合作过程中,LDE效应我司会帮虑进来,保证正确性。
(3)
北京欧普兰能对高频时钟走线进行评估,如何用传输线模型进行分析;对于这种串接电阻的传输线匹配方案也有涉及,能够给出设计说明和项目验证指导;对于多端口网络有的建模经验,能够生成项目需要的频域和时域模型,方便项目进行设计后的模型选取。
(4)
对于传输线中关注的设计方法,北京欧普兰会结合项目实际情况进行联合验证,输出指导报告,供项目后续参考;串联电阻对振铃问题、过冲问题的影响,会进行细致的设计分析和项目验证;对于厚金属走线方案,结合设计方法给出串联电阻调整方案。
版权所有©2025 产品网