




原子荧光检测技术的不确定性分析
原子荧光检测技术中所产生的不确定因素有很多,其中包括测量仪器不够精密、环境条件的干扰、人员操作不当等等,从而使实验室间的测量结果具有可比性。在上述引起不确定性的因素当中,绝大多数都是由于在检测实验操作过程中产生的误差所引起的,通常情况下与方法的固有偏差无关。 偏差整体控制与影响结果方法参数的控制有着密切的关系。同时从各个不确定度分量对测量不确定度大小的对比来看,含量测定不确定度的主要因素是测量试液中元素含量与重复性引发的不确定度。所以,在日常测量过程中,我们必须随时调整仪器,原子荧光光谱仪公司,保证试验中实验仪器的良好性,以避免或减少以上所述的不确定度分量。 计算不确定度分量大致可分为随机变化估计、回收不确定度估计、总性能研究的不确定度等。由于称量过程而引起的不确定度,实验时,我们将天平的灵敏度进行调整,测量的可能值区间为半个区间,由误差引起不确定度。重复称量引起的不确定度,实验时将砝码放在天平上反复称量,观察变动性标准差引入标准不确定度。 在使用比色管定容消化液时也可能产生不确定度,比色管和溶液温度与校正时的温度不同同样会引起检测体积的不确定度。使用比色管引起不确定度时,双通道原子荧光光谱仪公司,包括标准不确定度和相对不确定度,温度引起的误差不确定度与重复测量引起的误差不确定度。但在实验时我们常常会忽略稀释对不确定度的影响。在实际使用原子荧光光度计测量时,仪器自校准是保证其检测质量的一项重要手段。
原子荧光光谱仪基本介绍
利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光强,在分析中应用广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,双轨道原子荧光光谱仪公司,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。
原子荧光
原子荧光是激发态的原子以光辐射的形式放出能量的过程。一般情况下气态自由原子处于基态,当吸收外部光源一定频率的辐射能量后,原子的外层电子由基态跃迁至高能态即为激发态,处于激发态的电子很不稳定,在很短的时间 (10-8s) 内即自发地释放能量返回到基态,以辐射的形式释放出能量,所发射出的特征光谱即为原子荧光光谱。因此,原子荧光的产生既有原子的光吸收过程,又有原子的光发射过程,它是两种过程综合的结果。原子荧光是基于由激发光源照射作用下,基态原子受激发光,当激发光源停止照射后,再发射过程立即停止。它属于冷激发,因此也可称之为光致发光或二次发光。

版权所有©2025 产品网